These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 26442287)
81. Gold nanoparticle aptamer assay for the determination of histamine in foodstuffs. Lerga TM; Skouridou V; Bermudo MC; Bashammakh AS; El-Shahawi MS; Alyoubi AO; O'Sullivan CK Mikrochim Acta; 2020 Jul; 187(8):452. PubMed ID: 32676707 [TBL] [Abstract][Full Text] [Related]
82. Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Wang Y; Yang F; Yang X Biosens Bioelectron; 2010 Apr; 25(8):1994-8. PubMed ID: 20138750 [TBL] [Abstract][Full Text] [Related]
83. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Chen Z; Tan Y; Zhang C; Yin L; Ma H; Ye N; Qiang H; Lin Y Biosens Bioelectron; 2014 Jun; 56():46-50. PubMed ID: 24463195 [TBL] [Abstract][Full Text] [Related]
84. Label-free exonuclease I-assisted signal amplification colorimetric sensor for highly sensitive detection of kanamycin. Li J; Liu Y; Lin H; Chen Y; Liu Z; Zhuang X; Tian C; Fu X; Chen L Food Chem; 2021 Jun; 347():128988. PubMed ID: 33465686 [TBL] [Abstract][Full Text] [Related]
85. Ultrasensitive, colorimetric detection of microRNAs based on isothermal exponential amplification reaction-assisted gold nanoparticle amplification. Li RD; Yin BC; Ye BC Biosens Bioelectron; 2016 Dec; 86():1011-1016. PubMed ID: 27498329 [TBL] [Abstract][Full Text] [Related]
86. DNA-based chemiluminescent nanoprobes for highly sensitive and selective detection of mercury(II) ion. Yu X; Liu X; Mou C; Wang Z Luminescence; 2013; 28(6):847-52. PubMed ID: 23097313 [TBL] [Abstract][Full Text] [Related]
87. Enzyme-free surface plasmon resonance aptasensor for amplified detection of adenosine via target-triggering strand displacement cycle and Au nanoparticles. Yao GH; Liang RP; Huang CF; Zhang L; Qiu JD Anal Chim Acta; 2015 Apr; 871():28-34. PubMed ID: 25847158 [TBL] [Abstract][Full Text] [Related]
88. Real-time colorimetric detection of target DNA using isothermal target and signaling probe amplification and gold nanoparticle cross-linking assay. Jung C; Chung JW; Kim UO; Kim MH; Park HG Biosens Bioelectron; 2011 Jan; 26(5):1953-8. PubMed ID: 20970981 [TBL] [Abstract][Full Text] [Related]
89. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III) in aqueous solution. Wu Y; Zhan S; Wang F; He L; Zhi W; Zhou P Chem Commun (Camb); 2012 May; 48(37):4459-61. PubMed ID: 22453203 [TBL] [Abstract][Full Text] [Related]
90. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms. Thavanathan J; Huang NM; Thong KL Int J Nanomedicine; 2015; 10():2711-22. PubMed ID: 25897217 [TBL] [Abstract][Full Text] [Related]
91. A Novel Design Combining Isothermal Exponential Amplification and Gold-Nanoparticles Visualization for Rapid Detection of miRNAs. Jiang J; Zhang B; Zhang C; Guan Y Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373308 [TBL] [Abstract][Full Text] [Related]
92. An enzyme-free and amplified colorimetric detection strategy: assembly of gold nanoparticles through target-catalytic circuits. Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; Wang K Analyst; 2015 Feb; 140(4):1004-7. PubMed ID: 25562066 [TBL] [Abstract][Full Text] [Related]
93. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Song KM; Jeong E; Jeon W; Cho M; Ban C Anal Bioanal Chem; 2012 Feb; 402(6):2153-61. PubMed ID: 22222912 [TBL] [Abstract][Full Text] [Related]
94. DNA Hybridization Assay Using Gold Nanoparticles and Electrophoresis Separation Provides 1 pM Sensitivity. Esashika K; Saiki T Bioconjug Chem; 2018 Jan; 29(1):182-189. PubMed ID: 29200266 [TBL] [Abstract][Full Text] [Related]
95. Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy. Zhao J; Jing P; Xue S; Xu W Biosens Bioelectron; 2017 Jan; 87():157-163. PubMed ID: 27551995 [TBL] [Abstract][Full Text] [Related]
96. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Wei H; Li B; Li J; Wang E; Dong S Chem Commun (Camb); 2007 Sep; (36):3735-7. PubMed ID: 17851611 [TBL] [Abstract][Full Text] [Related]
97. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network. Li X; Li W; Zhang S Analyst; 2010 Feb; 135(2):332-6. PubMed ID: 20098767 [TBL] [Abstract][Full Text] [Related]
98. Target recycling amplification for label-free and sensitive colorimetric detection of adenosine triphosphate based on un-modified aptamers and DNAzymes. Gong X; Li J; Zhou W; Xiang Y; Yuan R; Chai Y Anal Chim Acta; 2014 May; 828():80-4. PubMed ID: 24845818 [TBL] [Abstract][Full Text] [Related]
99. Single Gold Nanoparticle-Based Colorimetric Detection of Picomolar Mercury Ion with Dark-Field Microscopy. Liu X; Wu Z; Zhang Q; Zhao W; Zong C; Gai H Anal Chem; 2016 Feb; 88(4):2119-24. PubMed ID: 26810926 [TBL] [Abstract][Full Text] [Related]
100. Amplified fluorescence detection of adenosine via catalyzed hairpin assembly and host-guest interactions between β-cyclodextrin polymer and pyrene. Huang H; Yang X; Wang K; Wang Q; Guo Q; Huang J; Liu J; Song C Analyst; 2016 Apr; 141(8):2502-7. PubMed ID: 26999785 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]