These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

935 related articles for article (PubMed ID: 26442434)

  • 1. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of efficient, broadband single-element (20-80 MHz) ultrasonic transducers for medical imaging applications.
    Cannata JM; Ritter TA; Chen WH; Silverman RH; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1548-57. PubMed ID: 14682638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband electrical impedance matching for piezoelectric ultrasound transducers.
    Huang H; Paramo D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2699-707. PubMed ID: 23443705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An adjustable multi-scale single beam acoustic tweezers based on ultrahigh frequency ultrasonic transducer.
    Chen X; Lam KH; Chen R; Chen Z; Yu P; Chen Z; Shung KK; Zhou Q
    Biotechnol Bioeng; 2017 Nov; 114(11):2637-2647. PubMed ID: 28654158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of an ultrasonic transducer's sensitivity and impedance in a pulse-echo setup.
    Lopez-Sanchez AL; Schmerr LW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2101-12. PubMed ID: 17091845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spherically-shaped PZT thin film ultrasonic transducer with an acoustic impedance gradient matching layer based on a micromachined periodically structured flexible substrate.
    Feng GH; Liu WF
    Sensors (Basel); 2013 Oct; 13(10):13543-59. PubMed ID: 24113683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-element ultrasonic transducer modeling using a hybrid FD-PSTD method.
    Filoux E; Levassort F; Callé S; Certon D; Lethiecq M
    Ultrasonics; 2009 Dec; 49(8):611-4. PubMed ID: 19625065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyurea thin film ultrasonic transducers for nondestructive testing and medical imaging.
    Nakazawa M; Kosugi T; Nagatsuka H; Maezawa A; Nakamura K; Ueha S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Oct; 54(10):2165-74. PubMed ID: 18019256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PMN-PT single crystal, high-frequency ultrasonic needle transducers for pulsed-wave Doppler application.
    Zhou Q; Xu X; Gottlieb EJ; Sun L; Cannata JM; Ameri H; Humayun MS; Han P; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):668-75. PubMed ID: 17375836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
    Qian Y; Harris NR
    Ultrasonics; 2014 Feb; 54(2):586-91. PubMed ID: 24025461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the gain-bandwidth product of capacitive micromachined ultrasonic transducers.
    Olcum S; Senlik MN; Atalar A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Dec; 52(12):2211-9. PubMed ID: 16463487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):299-306. PubMed ID: 12322878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of transmit and receive performance at the fundamental and third harmonic resonance frequency of a medical ultrasound transducer.
    Frijlink ME; Løvstakken L; Torp H
    Ultrasonics; 2009 Dec; 49(8):601-4. PubMed ID: 19403153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Online Impedance Analysis and Matching System for Ultrasonic Transducers.
    Jin Z; Huo L; Long T; Guo X; Tu J; Zhang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Mar; 66(3):591-599. PubMed ID: 30582535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, fabrication and testing of a dual-band photoacoustic transducer.
    Liu JH; Wei CW; Sheu YL; Tasi YT; Wang YH; Li PC
    Ultrason Imaging; 2008 Oct; 30(4):217-27. PubMed ID: 19507675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and performance of high-frequency composite transducers with triangular-pillar geometry.
    Brown JA; Chérin E; Yin J; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):827-36. PubMed ID: 19406712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A KLM-circuit model of a multi-layer transducer for acoustic bladder volume measurements.
    Merks EJ; Borsboom JM; Bom N; van der Steen AF; de Jong N
    Ultrasonics; 2006 Dec; 44 Suppl 1():e705-10. PubMed ID: 16875709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 47.