BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 26442574)

  • 1. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent molecular resonances in quantum dot-metallic nanoparticle systems: coherent self-renormalization and structural effects.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 May; 23(20):205203. PubMed ID: 22543983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction.
    Hatef A; Sadeghi SM; Boulais É; Meunier M
    Nanotechnology; 2013 Jan; 24(1):015502. PubMed ID: 23220909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain without inversion in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2010 Nov; 21(45):455401. PubMed ID: 20947944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling.
    Sadeghi SM; Wing WJ; Gutha RR
    Nanotechnology; 2015 Feb; 26(8):085202. PubMed ID: 25648526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.
    Sadeghi SM
    Opt Lett; 2014 Sep; 39(17):4986-9. PubMed ID: 25166055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
    Ozel T; Nizamoglu S; Sefunc MA; Samarskaya O; Ozel IO; Mutlugun E; Lesnyak V; Gaponik N; Eychmuller A; Gaponenko SV; Demir HV
    ACS Nano; 2011 Feb; 5(2):1328-34. PubMed ID: 21247187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.
    Sadeghi SM; Wing WJ; Gutha RR; Capps L
    Nanotechnology; 2017 Mar; 28(9):095701. PubMed ID: 28120813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems.
    Sadeghi SM; Deng L; Li X; Huang WP
    Nanotechnology; 2009 Sep; 20(36):365401. PubMed ID: 19687539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological sensing and control of emission dynamics of quantum dot bioconjugates using arrays of long metallic nanorods.
    Sadeghi SM; Gutha RR; Wing WJ; Sharp C; Capps L; Mao C
    J Phys D Appl Phys; 2017; 50(14):. PubMed ID: 29618846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices.
    Muñoz-Rosas AL; Rodríguez-Gómez A; Alonso-Huitrón JC
    Nanomaterials (Basel); 2018 Mar; 8(4):. PubMed ID: 29565267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.
    Patty K; Sadeghi SM; Nejat A; Mao CB
    Nanotechnology; 2014 Apr; 25(15):155701. PubMed ID: 24642896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Balancing silicon/aluminum oxide junctions for super-plasmonic emission enhancement of quantum dots via plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Wilt JS; Wu JZ
    Nanoscale; 2018 Mar; 10(10):4825-4832. PubMed ID: 29473074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emission enhancement and polarization of semiconductor quantum dots with nanoimprinted plasmonic cavities: towards scalable fabrication of plasmon-exciton displays.
    Cadusch JJ; Panchenko E; Kirkwood N; James TD; Gibson BC; Webb KJ; Mulvaney P; Roberts A
    Nanoscale; 2015 Sep; 7(33):13816-21. PubMed ID: 26223481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems.
    Trotsiuk L; Muravitskaya A; Kulakovich O; Guzatov D; Ramanenka A; Kelestemur Y; Demir HV; Gaponenko S
    Nanotechnology; 2020 Mar; 31(10):105201. PubMed ID: 31751975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Effect on Exciton and Multiexciton Emission of Single Quantum Dots.
    Dey S; Zhao J
    J Phys Chem Lett; 2016 Aug; 7(15):2921-9. PubMed ID: 27411778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.