These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 26442574)

  • 21. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum dot-metallic nanorod sensors via exciton-plasmon interaction.
    Hatef A; Sadeghi SM; Boulais É; Meunier M
    Nanotechnology; 2013 Jan; 24(1):015502. PubMed ID: 23220909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates.
    Patty K; Sadeghi SM; Campbell Q; Hamilton N; West RG; Mao C
    J Appl Phys; 2014 Sep; 116(11):114301. PubMed ID: 25316953
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel collective resonances in arrays of gold nanorods.
    Vitrey A; Aigouy L; Prieto P; García-Martín JM; González MU
    Nano Lett; 2014; 14(4):2079-85. PubMed ID: 24645987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.
    Patty K; Sadeghi SM; Nejat A; Mao CB
    Nanotechnology; 2014 Apr; 25(15):155701. PubMed ID: 24642896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-organized colloidal quantum dots and metal nanoparticles for plasmon-enhanced intermediate-band solar cells.
    Mendes MJ; Hernández E; López E; García-Linares P; Ramiro I; Artacho I; Antolín E; Tobías I; Martí A; Luque A
    Nanotechnology; 2013 Aug; 24(34):345402. PubMed ID: 23912379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application.
    Zhao WW; Yu PP; Shan Y; Wang J; Xu JJ; Chen HY
    Anal Chem; 2012 Jul; 84(14):5892-7. PubMed ID: 22765356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exciton-plasmon interactions in quantum dot-gold nanoparticle structures.
    Cohen-Hoshen E; Bryant GW; Pinkas I; Sperling J; Bar-Joseph I
    Nano Lett; 2012 Aug; 12(8):4260-4. PubMed ID: 22738161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent control of Forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses.
    Sadeghi SM; West RG
    J Phys Condens Matter; 2011 Oct; 23(42):425302. PubMed ID: 21969173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods.
    Ming T; Zhao L; Yang Z; Chen H; Sun L; Wang J; Yan C
    Nano Lett; 2009 Nov; 9(11):3896-903. PubMed ID: 19754068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex.
    Cheng MT; Liu SD; Zhou HJ; Hao ZH; Wang QQ
    Opt Lett; 2007 Aug; 32(15):2125-7. PubMed ID: 17671558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection.
    Lee J; Hernandez P; Lee J; Govorov AO; Kotov NA
    Nat Mater; 2007 Apr; 6(4):291-5. PubMed ID: 17384635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect.
    Zhang W; Govorov AO; Bryant GW
    Phys Rev Lett; 2006 Oct; 97(14):146804. PubMed ID: 17155282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarization-selective plasmon-enhanced silicon quantum-dot luminescence.
    Mertens H; Biteen JS; Atwater HA; Polman A
    Nano Lett; 2006 Nov; 6(11):2622-5. PubMed ID: 17090102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement and quenching of single-molecule fluorescence.
    Anger P; Bharadwaj P; Novotny L
    Phys Rev Lett; 2006 Mar; 96(11):113002. PubMed ID: 16605818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single quantum dot coupled to a scanning optical antenna: a tunable superemitter.
    Farahani JN; Pohl DW; Eisler HJ; Hecht B
    Phys Rev Lett; 2005 Jul; 95(1):017402. PubMed ID: 16090656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.