These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 26443483)
1. Volatile Organic Metabolites Identify Patients with Mesangial Proliferative Glomerulonephritis, IgA Nephropathy and Normal Controls. Wang C; Feng Y; Wang M; Pi X; Tong H; Wang Y; Zhu L; Li E Sci Rep; 2015 Oct; 5():14744. PubMed ID: 26443483 [TBL] [Abstract][Full Text] [Related]
2. Differential effects of circulating IgA isolated from patients with IgA nephropathy on superoxide and fibronectin production of mesangial cells. Chen HC; Guh JY; Chang JM; Lai YH Nephron; 2001 Jul; 88(3):211-7. PubMed ID: 11423751 [TBL] [Abstract][Full Text] [Related]
4. Urinary Volatile Organic Compounds as Potential Biomarkers in Idiopathic Membranous Nephropathy. Wang M; Xie R; Jia X; Liu R Med Princ Pract; 2017; 26(4):375-380. PubMed ID: 28633145 [TBL] [Abstract][Full Text] [Related]
5. Urine volatile organic compounds as biomarkers for minimal change type nephrotic syndrome. Liu D; Zhao N; Wang M; Pi X; Feng Y; Wang Y; Tong H; Zhu L; Wang C; Li E Biochem Biophys Res Commun; 2018 Jan; 496(1):58-63. PubMed ID: 29291407 [TBL] [Abstract][Full Text] [Related]
6. Use of solid-phase microextraction coupled to gas chromatography-mass spectrometry for determination of urinary volatile organic compounds in autistic children compared with healthy controls. Cozzolino R; De Magistris L; Saggese P; Stocchero M; Martignetti A; Di Stasio M; Malorni A; Marotta R; Boscaino F; Malorni L Anal Bioanal Chem; 2014 Jul; 406(19):4649-62. PubMed ID: 24828982 [TBL] [Abstract][Full Text] [Related]
7. GC-MS metabolomics-based approach for the identification of a potential VOC-biomarker panel in the urine of renal cell carcinoma patients. Monteiro M; Moreira N; Pinto J; Pires-Luís AS; Henrique R; Jerónimo C; Bastos ML; Gil AM; Carvalho M; Guedes de Pinho P J Cell Mol Med; 2017 Sep; 21(9):2092-2105. PubMed ID: 28378454 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive detection of colorectal cancer by analysis of exhaled breath. Wang C; Ke C; Wang X; Chi C; Guo L; Luo S; Guo Z; Xu G; Zhang F; Li E Anal Bioanal Chem; 2014 Jul; 406(19):4757-63. PubMed ID: 24820062 [TBL] [Abstract][Full Text] [Related]
9. [Study of correlation between urinary IL-6 level and mesangial lesion in childhood onset IgA nephropathy]. Akutsu Y Hokkaido Igaku Zasshi; 1994 Jul; 69(4):686-96. PubMed ID: 7959587 [TBL] [Abstract][Full Text] [Related]
10. A quantitative study of mesangial deposits and glomerular monocytes/macrophages in IgA-nephropathy and proliferative mesangial (non-IgA) glomerulonephritis. Danilewicz M; Wagrowska-Danilewicz M J Nephrol; 1998; 11(5):255-60. PubMed ID: 9831239 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of FMLP-activated neutrophils from patients with IgA nephropathy enhanced endothelin 1 production of glomerular mesangial cells. Chen HC; Guh JY; Chang JM; Lai YH Nephron; 2001 Nov; 89(3):274-9. PubMed ID: 11598389 [TBL] [Abstract][Full Text] [Related]
12. Tissue-specific expression of renin-angiotensin system components in IgA nephropathy. Miyake-Ogawa C; Miyazaki M; Abe K; Harada T; Ozono Y; Sakai H; Koji T; Kohno S Am J Nephrol; 2005; 25(1):1-12. PubMed ID: 15644622 [TBL] [Abstract][Full Text] [Related]
13. Application of Sparse Linear Discriminant Analysis and Elastic Net for Diagnosis of IgA Nephropathy: Statistical and Biological Viewpoints. Mohammadi Majd T; Kalantari S; Raeisi Shahraki H; Nafar M; Almasi A; Samavat S; Parvin M; Hashemian A Iran Biomed J; 2018 Nov; 22(6):374-84. PubMed ID: 29523019 [TBL] [Abstract][Full Text] [Related]
14. Altered long non-coding RNA expression profile in patients with IgA-negative mesangial proliferative glomerulonephritis. Sui W; Li H; Ou M; Tang D; Dai Y Int J Mol Med; 2012 Jul; 30(1):173-8. PubMed ID: 22576627 [TBL] [Abstract][Full Text] [Related]
15. Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography-mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile. Pontes M; Pereira J; Câmara JS Food Chem; 2012 Oct; 134(4):2509-20. PubMed ID: 23442718 [TBL] [Abstract][Full Text] [Related]
16. Investigation of volatile organic metabolites in lung cancer pleural effusions by solid-phase microextraction and gas chromatography/mass spectrometry. Liu H; Wang H; Li C; Wang L; Pan Z; Wang L J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 945-946():53-9. PubMed ID: 24321761 [TBL] [Abstract][Full Text] [Related]
17. Determination of volatile organic compounds as biomarkers of lung cancer by SPME-GC-TOF/MS and chemometrics. Rudnicka J; Kowalkowski T; Ligor T; Buszewski B J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(30):3360-6. PubMed ID: 21982505 [TBL] [Abstract][Full Text] [Related]
18. Analysis of Exhaled Breath Volatile Organic Compounds in Inflammatory Bowel Disease: A Pilot Study. Hicks LC; Huang J; Kumar S; Powles ST; Orchard TR; Hanna GB; Williams HR J Crohns Colitis; 2015 Sep; 9(9):731-7. PubMed ID: 26071410 [TBL] [Abstract][Full Text] [Related]
19. A correlation between immunoexpression of CD44, alpha-SMA and CD68+ cells in IgA-nephropathy and in mesangial proliferative IgA-negative glomerulonephritis. Wagrowska-Danilewicz M; Danilewicz M Pol J Pathol; 2002; 53(3):155-62. PubMed ID: 12476618 [TBL] [Abstract][Full Text] [Related]
20. Use of gas chromatography mass spectrometry to elucidate metabolites predicting the phenotypes of IgA nephropathy in hyper IgA mice. Kurano M; Yatomi Y PLoS One; 2019; 14(7):e0219403. PubMed ID: 31291349 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]