BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26443594)

  • 1. Increased STAG2 dosage defines a novel cohesinopathy with intellectual disability and behavioral problems.
    Kumar R; Corbett MA; Van Bon BW; Gardner A; Woenig JA; Jolly LA; Douglas E; Friend K; Tan C; Van Esch H; Holvoet M; Raynaud M; Field M; Leffler M; Budny B; Wisniewska M; Badura-Stronka M; Latos-Bieleńska A; Batanian J; Rosenfeld JA; Basel-Vanagaite L; Jensen C; Bienek M; Froyen G; Ullmann R; Hu H; Love MI; Haas SA; Stankiewicz P; Cheung SW; Baxendale A; Nicholl J; Thompson EM; Haan E; Kalscheuer VM; Gecz J
    Hum Mol Genet; 2015 Dec; 24(25):7171-81. PubMed ID: 26443594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microduplication of chromosome Xq25 encompassing STAG2 gene in a boy with intellectual disability.
    Yingjun X; Wen T; Yujian L; Lingling X; Huimin H; Qun F; Junhong C
    Eur J Med Genet; 2015 Feb; 58(2):116-21. PubMed ID: 25450604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xq25 duplication: the crucial role of the STAG2 gene in this novel human cohesinopathy.
    Leroy C; Jacquemont ML; Doray B; Lamblin D; Cormier-Daire V; Philippe A; Nusbaum S; Patrat C; Steffann J; Colleaux L; Vekemans M; Romana S; Turleau C; Malan V
    Clin Genet; 2016 Jan; 89(1):68-73. PubMed ID: 25677961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xq25 duplications encompassing GRIA3 and STAG2 genes in two families convey recognizable X-linked intellectual disability with distinctive facial appearance.
    Philippe A; Malan V; Jacquemont ML; Boddaert N; Bonnefont JP; Odent S; Munnich A; Colleaux L; Cormier-Daire V
    Am J Med Genet A; 2013 Jun; 161A(6):1370-5. PubMed ID: 23637084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Definition of minimal duplicated region encompassing the XIAP and STAG2 genes in the Xq25 microduplication syndrome.
    Di Benedetto D; Musumeci SA; Avola E; Alberti A; Buono S; Scuderi C; Grillo L; Galesi O; Spalletta A; Giudice ML; Luciano D; Vinci M; Bianca S; Romano C; Fichera M
    Am J Med Genet A; 2014 Aug; 164A(8):1923-30. PubMed ID: 24733578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements.
    Froyen G; Belet S; Martinez F; Santos-Rebouças CB; Declercq M; Verbeeck J; Donckers L; Berland S; Mayo S; Rosello M; Pimentel MM; Fintelman-Rodrigues N; Hovland R; Rodrigues dos Santos S; Raymond FL; Bose T; Corbett MA; Sheffield L; van Ravenswaaij-Arts CM; Dijkhuizen T; Coutton C; Satre V; Siu V; Marynen P
    Am J Hum Genet; 2012 Aug; 91(2):252-64. PubMed ID: 22840365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel microduplications at Xp11.22 including HUWE1: clinical and molecular insights into these genomic rearrangements associated with intellectual disability.
    Santos-Rebouças CB; de Almeida LG; Belet S; Dos Santos SR; Ribeiro MG; da Silva AF; Medina-Acosta E; Dos Santos JM; Gonçalves AP; Bahia PR; Pimentel MM; Froyen G
    J Hum Genet; 2015 Apr; 60(4):207-11. PubMed ID: 25652354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De novo loss-of-function variants in STAG2 are associated with developmental delay, microcephaly, and congenital anomalies.
    Mullegama SV; Klein SD; Mulatinho MV; Senaratne TN; Singh K; ; Nguyen DC; Gallant NM; Strom SP; Ghahremani S; Rao NP; Martinez-Agosto JA
    Am J Med Genet A; 2017 May; 173(5):1319-1327. PubMed ID: 28296084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sporadic male patients with intellectual disability: contribution of X-chromosome copy number variants.
    Isrie M; Froyen G; Devriendt K; de Ravel T; Fryns JP; Vermeesch JR; Van Esch H
    Eur J Med Genet; 2012 Nov; 55(11):577-85. PubMed ID: 22659343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xp11.2 microduplications including IQSEC2, TSPYL2 and KDM5C genes in patients with neurodevelopmental disorders.
    Moey C; Hinze SJ; Brueton L; Morton J; McMullan DJ; Kamien B; Barnett CP; Brunetti-Pierri N; Nicholl J; Gecz J; Shoubridge C
    Eur J Hum Genet; 2016 Mar; 24(3):373-80. PubMed ID: 26059843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in STAG2 cause an X-linked cohesinopathy associated with undergrowth, developmental delay, and dysmorphia: Expanding the phenotype in males.
    Mullegama SV; Klein SD; Signer RH; ; Vilain E; Martinez-Agosto JA
    Mol Genet Genomic Med; 2019 Feb; 7(2):e00501. PubMed ID: 30447054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Array CGH analysis of a cohort of Russian patients with intellectual disability.
    Kashevarova AA; Nazarenko LP; Skryabin NA; Salyukova OA; Chechetkina NN; Tolmacheva EN; Sazhenova EA; Magini P; Graziano C; Romeo G; Kučinskas V; Lebedev IN
    Gene; 2014 Feb; 536(1):145-50. PubMed ID: 24291026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Familial
    Soardi FC; Machado-Silva A; Linhares ND; Zheng G; Qu Q; Pena HB; Martins TMM; Vieira HGS; Pereira NB; Melo-Minardi RC; Gomes CC; Gomez RS; Gomes DA; Pires DEV; Ascher DB; Yu H; Pena SDJ
    NPJ Genom Med; 2017; 2():7. PubMed ID: 29263825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequent inactivating mutations of STAG2 in bladder cancer are associated with low tumour grade and stage and inversely related to chromosomal copy number changes.
    Taylor CF; Platt FM; Hurst CD; Thygesen HH; Knowles MA
    Hum Mol Genet; 2014 Apr; 23(8):1964-74. PubMed ID: 24270882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational inactivation of STAG2 causes aneuploidy in human cancer.
    Solomon DA; Kim T; Diaz-Martinez LA; Fair J; Elkahloun AG; Harris BT; Toretsky JA; Rosenberg SA; Shukla N; Ladanyi M; Samuels Y; James CD; Yu H; Kim JS; Waldman T
    Science; 2011 Aug; 333(6045):1039-43. PubMed ID: 21852505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased dosage of RAB39B affects neuronal development and could explain the cognitive impairment in male patients with distal Xq28 copy number gains.
    Vanmarsenille L; Giannandrea M; Fieremans N; Verbeeck J; Belet S; Raynaud M; Vogels A; Männik K; Õunap K; Jacqueline V; Briault S; Van Esch H; D'Adamo P; Froyen G
    Hum Mutat; 2014 Mar; 35(3):377-83. PubMed ID: 24357492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confirmation of chromosomal microarray as a first-tier clinical diagnostic test for individuals with developmental delay, intellectual disability, autism spectrum disorders and dysmorphic features.
    Battaglia A; Doccini V; Bernardini L; Novelli A; Loddo S; Capalbo A; Filippi T; Carey JC
    Eur J Paediatr Neurol; 2013 Nov; 17(6):589-99. PubMed ID: 23711909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of STAG2 causes aneuploidy in normal human bladder cells.
    Li X; Zhang TW; Tang JL; Fa PP; Lu JX; Qi FM; Cai ZM; Liu CX; Sun XJ
    Genet Mol Res; 2015 Mar; 14(1):2638-46. PubMed ID: 25867412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of Tumor Suppressor
    Daniloski Z; Smith S
    Cancer Res; 2017 Oct; 77(20):5530-5542. PubMed ID: 28819029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of STAG2 in bladder cancer.
    Aquila L; Ohm J; Woloszynska-Read A
    Pharmacol Res; 2018 May; 131():143-149. PubMed ID: 29501732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.