These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 26443730)

  • 1. Nus Factors of Escherichia coli.
    Sen R; Chalissery J; Muteeb G
    EcoSal Plus; 2008 Sep; 3(1):. PubMed ID: 26443730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SuhB Associates with Nus Factors To Facilitate 30S Ribosome Biogenesis in Escherichia coli.
    Singh N; Bubunenko M; Smith C; Abbott DM; Stringer AM; Shi R; Court DL; Wade JT
    mBio; 2016 Mar; 7(2):e00114. PubMed ID: 26980831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator.
    DeVito J; Das A
    Proc Natl Acad Sci U S A; 1994 Aug; 91(18):8660-4. PubMed ID: 7521531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fine tuning of the E. coli NusB:NusE complex affinity to BoxA RNA is required for processive antitermination.
    Burmann BM; Luo X; Rösch P; Wahl MC; Gottesman ME
    Nucleic Acids Res; 2010 Jan; 38(1):314-26. PubMed ID: 19854945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo effect of NusB and NusG on rRNA transcription antitermination.
    Torres M; Balada JM; Zellars M; Squires C; Squires CL
    J Bacteriol; 2004 Mar; 186(5):1304-10. PubMed ID: 14973028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription antitermination in vitro by lambda N gene product: requirement for a phage nut site and the products of host nusA, nusB, and nusE genes.
    Das A; Wolska K
    Cell; 1984 Aug; 38(1):165-73. PubMed ID: 6088061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of bacteriophage lambdaN-dependent antitermination suggests a possible role for the RNA polymerase alpha subunit in facilitating specific functions of NusA and NusE.
    Szalewska-Pałasz A; Strzelczyk B; Herman-Antosiewicz A; Wegrzyn G; Thomas MS
    Arch Microbiol; 2003 Sep; 180(3):161-8. PubMed ID: 12845423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal RNA antitermination in vitro: requirement for Nus factors and one or more unidentified cellular components.
    Squires CL; Greenblatt J; Li J; Condon C; Squires CL
    Proc Natl Acad Sci U S A; 1993 Feb; 90(3):970-4. PubMed ID: 8430111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Escherichia coli nusG function on lambda N-mediated transcription antitermination.
    Sullivan SL; Ward DF; Gottesman ME
    J Bacteriol; 1992 Feb; 174(4):1339-44. PubMed ID: 1531224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for λN-dependent processive transcription antitermination.
    Said N; Krupp F; Anedchenko E; Santos KF; Dybkov O; Huang YH; Lee CT; Loll B; Behrmann E; Bürger J; Mielke T; Loerke J; Urlaub H; Spahn CMT; Weber G; Wahl MC
    Nat Microbiol; 2017 Apr; 2():17062. PubMed ID: 28452979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG.
    Zellars M; Squires CL
    Mol Microbiol; 1999 Jun; 32(6):1296-304. PubMed ID: 10383769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An analysis of the role of host factors in transcription antitermination in vitro by the Q protein of coliphage lambda.
    Barik S; Das A
    Mol Gen Genet; 1990 Jun; 222(1):152-6. PubMed ID: 2146485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nus mutations affect transcription termination in Escherichia coli.
    Ward DF; Gottesman ME
    Nature; 1981 Jul; 292(5820):212-5. PubMed ID: 6265784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of NusB from Mycobacterium tuberculosis.
    Gopal B; Haire LF; Cox RA; Jo Colston M; Major S; Brannigan JA; Smerdon SJ; Dodson G
    Nat Struct Biol; 2000 Jun; 7(6):475-8. PubMed ID: 10881194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of transcription elongation complexes containing the N protein of phage lambda and the Escherichia coli elongation factors NusA, NusB, NusG, and S10.
    Mason SW; Greenblatt J
    Genes Dev; 1991 Aug; 5(8):1504-12. PubMed ID: 1831176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of E.coli NusA in phage HK022 Nun-mediated transcription termination.
    Kim HC; Washburn RS; Gottesman ME
    J Mol Biol; 2006 May; 359(1):10-21. PubMed ID: 16631197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous gain and loss of functions caused by a single amino acid substitution in the beta subunit of Escherichia coli RNA polymerase: suppression of nusA and rho mutations and conditional lethality.
    Sparkowski J; Das A
    Genetics; 1992 Mar; 130(3):411-28. PubMed ID: 1551568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination.
    Patterson TA; Zhang Z; Baker T; Johnson LL; Friedman DI; Court DL
    J Mol Biol; 1994 Feb; 236(1):217-28. PubMed ID: 8107107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribosomal protein S4 is a transcription factor with properties remarkably similar to NusA, a protein involved in both non-ribosomal and ribosomal RNA antitermination.
    Torres M; Condon C; Balada JM; Squires C; Squires CL
    EMBO J; 2001 Jul; 20(14):3811-20. PubMed ID: 11447122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy.
    Drögemüller J; Strauß M; Schweimer K; Jurk M; Rösch P; Knauer SH
    Sci Rep; 2015 Nov; 5():16428. PubMed ID: 26560741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.