These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 26443754)

  • 1. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2009 Aug; 3(2):. PubMed ID: 26443754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.
    Unden G; Bongaerts J
    Biochim Biophys Acta; 1997 Jul; 1320(3):217-34. PubMed ID: 9230919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In the respiratory chain of Escherichia coli cytochromes bd-I and bd-II are more sensitive to carbon monoxide inhibition than cytochrome bo
    Forte E; Borisov VB; Siletsky SA; Petrosino M; Giuffrè A
    Biochim Biophys Acta Bioenerg; 2019 Dec; 1860(12):148088. PubMed ID: 31669488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd.
    Miura H; Mogi T; Ano Y; Migita CT; Matsutani M; Yakushi T; Kita K; Matsushita K
    J Biochem; 2013 Jun; 153(6):535-45. PubMed ID: 23526305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans.
    Richhardt J; Luchterhand B; Bringer S; Büchs J; Bott M
    J Bacteriol; 2013 Sep; 195(18):4210-20. PubMed ID: 23852873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of cytochrome bd plastoquinol oxidase from the cyanobacterium Synechocystis sp. PCC 6803.
    Mogi T; Miyoshi H
    J Biochem; 2009 Mar; 145(3):395-401. PubMed ID: 19124292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All Three Endogenous Quinone Species of Escherichia coli Are Involved in Controlling the Activity of the Aerobic/Anaerobic Response Regulator ArcA.
    van Beilen JW; Hellingwerf KJ
    Front Microbiol; 2016; 7():1339. PubMed ID: 27656164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of quinones in electron transport to oxygen and nitrate in Escherichia coli. Studies with a ubiA- menA- double quinone mutant.
    Wallace BJ; Young IG
    Biochim Biophys Acta; 1977 Jul; 461(1):84-100. PubMed ID: 195602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and Biological Screening of New Lawson Derivatives as Selective Substrate-Based Inhibitors of Cytochrome bo
    Elamri I; Radloff M; Hohmann KF; Nimbarte VD; Nasiri HR; Bolte M; Safarian S; Michel H; Schwalbe H
    ChemMedChem; 2020 Jul; 15(14):1262-1271. PubMed ID: 32159929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The respiratory chain of Corynebacterium glutamicum.
    Bott M; Niebisch A
    J Biotechnol; 2003 Sep; 104(1-3):129-53. PubMed ID: 12948635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Terminal Oxidase Cytochrome bd Promotes Sulfide-resistant Bacterial Respiration and Growth.
    Forte E; Borisov VB; Falabella M; Colaço HG; Tinajero-Trejo M; Poole RK; Vicente JB; Sarti P; Giuffrè A
    Sci Rep; 2016 Mar; 6():23788. PubMed ID: 27030302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
    Ma J; Puustinen A; Wikström M; Gennis RB
    Biochemistry; 1998 Aug; 37(34):11806-11. PubMed ID: 9718303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Escherichia coli mutants with a linear respiratory chain.
    Steinsiek S; Stagge S; Bettenbrock K
    PLoS One; 2014; 9(1):e87307. PubMed ID: 24475268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of high- and low-affinity quinol-analogue-binding sites in the aa3 and bo3 terminal oxidases from Bacillus subtilis and Escherichia coli1.
    Bossis F; De Grassi A; Palese LL; Pierri CL
    Biochem J; 2014 Jul; 461(2):305-14. PubMed ID: 24779955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen reactions with bacterial oxidases and globins: binding, reduction and regulation.
    Poole RK
    Antonie Van Leeuwenhoek; 1994; 65(4):289-310. PubMed ID: 7832588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytochrome bd-Dependent Bioenergetics and Antinitrosative Defenses in Salmonella Pathogenesis.
    Jones-Carson J; Husain M; Liu L; Orlicky DJ; Vázquez-Torres A
    mBio; 2016 Dec; 7(6):. PubMed ID: 27999164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the function of the various quinone species in Escherichia coli.
    Sharma P; Teixeira de Mattos MJ; Hellingwerf KJ; Bekker M
    FEBS J; 2012 Sep; 279(18):3364-73. PubMed ID: 22521170
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Butler NL; Ito T; Foreman S; Morgan JE; Zagorevsky D; Malamy MH; Comstock LE; Barquera B
    J Bacteriol; 2023 Jan; 205(1):e0038922. PubMed ID: 36475831
    [No Abstract]   [Full Text] [Related]  

  • 20. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.
    Ramel F; Amrani A; Pieulle L; Lamrabet O; Voordouw G; Seddiki N; Brèthes D; Company M; Dolla A; Brasseur G
    Microbiology (Reading); 2013 Dec; 159(Pt 12):2663-2673. PubMed ID: 24085836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.