These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26444246)

  • 1. Anchoring High-Concentration Oxygen Vacancies at Interfaces of CeO(2-x)/Cu toward Enhanced Activity for Preferential CO Oxidation.
    Chen S; Li L; Hu W; Huang X; Li Q; Xu Y; Zuo Y; Li G
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22999-3007. PubMed ID: 26444246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MOF-derived high oxygen vacancies CuO/CeO
    Liu F; Chen X; Jie W; Liu Y; Li C; Song G; Gong X; Liu Q; Qiu M; Ding S; Hu F; Gong L; Kawi S
    J Colloid Interface Sci; 2024 Jun; 674():778-790. PubMed ID: 38955009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative study of CeO2 and doped CeO2 with tailored oxygen vacancies for CO oxidation.
    Wang Z; Wang Q; Liao Y; Shen G; Gong X; Han N; Liu H; Chen Y
    Chemphyschem; 2011 Oct; 12(15):2763-70. PubMed ID: 21882333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimum Preferential Oxidation Performance of CeO
    Ding J; Li L; Li H; Chen S; Fang S; Feng T; Li G
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7935-7945. PubMed ID: 29425017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CeO2 nanorods-supported transition metal catalysts for CO oxidation.
    Mock SA; Sharp SE; Stoner TR; Radetic MJ; Zell ET; Wang R
    J Colloid Interface Sci; 2016 Mar; 466():261-7. PubMed ID: 26745742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different metal (Mn, Fe, Co, Ni, and Zr) decorated Cu/CeO
    Xing Y; Wu J; Liu D; Zhang C; Han J; Wang H; Li Y; Hou X; Zhang L; Gao Z
    Phys Chem Chem Phys; 2024 Apr; 26(15):11618-11630. PubMed ID: 38546226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mild activation of CeO2-supported gold nanoclusters and insight into the catalytic behavior in CO oxidation.
    Li W; Ge Q; Ma X; Chen Y; Zhu M; Xu H; Jin R
    Nanoscale; 2016 Jan; 8(4):2378-85. PubMed ID: 26750474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile and Mild Strategy to Construct Mesoporous CeO2-CuO Nanorods with Enhanced Catalytic Activity toward CO Oxidation.
    Chen G; Xu Q; Yang Y; Li C; Huang T; Sun G; Zhang S; Ma D; Li X
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23538-44. PubMed ID: 26455260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vacancy-Mediated Processes in the Oxidation of CO on PdO(101).
    Weaver JF; Zhang F; Pan L; Li T; Asthagiri A
    Acc Chem Res; 2015 May; 48(5):1515-23. PubMed ID: 25933250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultra-Fine CeO
    Zheng Y; Xiao H; Li K; Wang Y; Li Y; Wei Y; Zhu X; Li HW; Matsumura D; Guo B; He F; Chen X; Wang H
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42274-42284. PubMed ID: 32830480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO oxidation mechanism on CeO(2)-supported Au nanoparticles.
    Kim HY; Lee HM; Henkelman G
    J Am Chem Soc; 2012 Jan; 134(3):1560-70. PubMed ID: 22191484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting total oxidation of propane over CeO
    Feng X; Luo F; Chen Y; Lin D; Luo Y; Xiao L; Liu X; Sun X; Qian Q; Chen Q
    J Hazard Mater; 2021 Mar; 406():124695. PubMed ID: 33310339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO-free hydrogen production for fuel cell applications over Au/CeO2 catalysts: FTIR insight into the role of dopant.
    Tabakova T; Manzoli M; Vindigni F; Idakiev V; Boccuzzi F
    J Phys Chem A; 2010 Mar; 114(11):3909-15. PubMed ID: 19788199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Hydrogen Evolution Reaction Performance of NiCo
    Wang X; Sun C; He F; Liu E; He C; Shi C; Li J; Sha J; Ji S; Ma L; Zhao N
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32460-32468. PubMed ID: 31274294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2.
    Deng C; Li B; Dong L; Zhang F; Fan M; Jin G; Gao J; Gao L; Zhang F; Zhou X
    Phys Chem Chem Phys; 2015 Jun; 17(24):16092-109. PubMed ID: 26030478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: complex interaction between metallic copper and oxygen vacancies of ceria.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernández-García M
    J Phys Chem B; 2006 Jan; 110(1):428-34. PubMed ID: 16471552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cu/CeO
    Chen C; Zhan Y; Zhou J; Li D; Zhang Y; Lin X; Jiang L; Zheng Q
    Chemphyschem; 2018 Jun; 19(12):1448-1455. PubMed ID: 29539184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Boosting benzene combustion by engineering oxygen vacancy-mediated Ag/CeO
    Ma X; Xiao M; Yang X; Yu X; Ge M
    J Colloid Interface Sci; 2021 Jul; 594():882-890. PubMed ID: 33794410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.