These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26444439)

  • 1. Important factors determining the nanoscale tracking precision of dynamic microtubule ends.
    Bohner G; Gustafsson N; Cade NI; Maurer SP; Griffin LD; Surrey T
    J Microsc; 2016 Jan; 261(1):67-78. PubMed ID: 26444439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3-D reconstruction of microtubules from multi-angle total internal reflection fluorescence microscopy using Bayesian framework.
    Yang Q; Karpikov A; Toomre D; Duncan JS
    IEEE Trans Image Process; 2011 Aug; 20(8):2248-59. PubMed ID: 21324778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules.
    Kapoor V; Hirst WG; Hentschel C; Preibisch S; Reber S
    Sci Rep; 2019 Mar; 9(1):3794. PubMed ID: 30846705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying Yeast Microtubules and Spindles Using the Toolkit for Automated Microtubule Tracking (TAMiT).
    Ansari S; Gergely ZR; Flynn P; Li G; Moore JK; Betterton MD
    Biomolecules; 2023 Jun; 13(6):. PubMed ID: 37371519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution and quantification of dynamic microtubule end tracking in vitro using TIRF microscopy.
    Telley IA; Bieling P; Surrey T
    Methods Mol Biol; 2011; 777():127-45. PubMed ID: 21773926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization and analysis of microtubule dynamics using dual color-coded display of plus-end labels.
    Garrison AK; Shanmugam M; Leung HC; Xia C; Wang Z; Ma L
    PLoS One; 2012; 7(11):e50421. PubMed ID: 23226282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Particle filtering for multiple object tracking in dynamic fluorescence microscopy images: application to microtubule growth analysis.
    Smal I; Draegestein K; Galjart N; Niessen W; Meijering E
    IEEE Trans Med Imaging; 2008 Jun; 27(6):789-804. PubMed ID: 18541486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model based dynamics analysis in live cell microtubule images.
    Altinok A; Kiris E; Peck AJ; Feinstein SC; Wilson L; Manjunath BS; Rose K
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S4. PubMed ID: 17634094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microtubule plus-end tracking by CLIP-170 requires EB1.
    Dixit R; Barnett B; Lazarus JE; Tokito M; Goldman YE; Holzbaur EL
    Proc Natl Acad Sci U S A; 2009 Jan; 106(2):492-7. PubMed ID: 19126680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying yeast microtubules and spindles using the Toolkit for Automated Microtubule Tracking (TAMiT).
    Ansari S; Gergely ZR; Flynn P; Li G; Moore JK; Betterton MD
    bioRxiv; 2023 Feb; ():. PubMed ID: 36798368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A TIRF microscopy assay to decode how tau regulates EB's tracking at microtubule ends.
    Ramirez-Rios S; Serre L; Stoppin-Mellet V; Prezel E; Vinit A; Courriol E; Fourest-Lieuvin A; Delaroche J; Denarier E; Arnal I
    Methods Cell Biol; 2017; 141():179-197. PubMed ID: 28882301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time computation of subdiffraction-resolution fluorescence images.
    Wolter S; Schüttpelz M; Tscherepanow M; VAN DE Linde S; Heilemann M; Sauer M
    J Microsc; 2010 Jan; 237(1):12-22. PubMed ID: 20055915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Faster STORM using compressed sensing.
    Zhu L; Zhang W; Elnatan D; Huang B
    Nat Methods; 2012 Apr; 9(7):721-3. PubMed ID: 22522657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of microtubule self-assembly kinetics and tip structure.
    Prahl LS; Castle BT; Gardner MK; Odde DJ
    Methods Enzymol; 2014; 540():35-52. PubMed ID: 24630100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying plus-end tracking at single molecule resolution using TIRF microscopy.
    Dixit R; Ross JL
    Methods Cell Biol; 2010; 95():543-54. PubMed ID: 20466152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.
    Gell C; Bormuth V; Brouhard GJ; Cohen DN; Diez S; Friel CT; Helenius J; Nitzsche B; Petzold H; Ribbe J; Schäffer E; Stear JH; Trushko A; Varga V; Widlund PO; Zanic M; Howard J
    Methods Cell Biol; 2010; 95():221-45. PubMed ID: 20466138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of fan-shaped tracker for single particle tracking.
    Jin L; Zhao F; Lin W; Zhou X; Kuang C; Nedzved A; Ablameyko S; Liu X; Xu Y
    Microsc Res Tech; 2020 Sep; 83(9):1056-1065. PubMed ID: 32324946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional preparation and imaging reveal intrinsic microtubule properties.
    Keller PJ; Pampaloni F; Stelzer EH
    Nat Methods; 2007 Oct; 4(10):843-6. PubMed ID: 17828271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstituting dynamic microtubule polymerization regulation by TOG domain proteins.
    Al-Bassam J
    Methods Enzymol; 2014; 540():131-48. PubMed ID: 24630105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of dual-color polarity-marked fluorescent microtubule seeds.
    Katsuki M; Muto E; Cross RA
    Methods Mol Biol; 2011; 777():117-26. PubMed ID: 21773925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.