BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

471 related articles for article (PubMed ID: 26444528)

  • 21. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening.
    Cramer GR; Cochetel N; Ghan R; Destrac-Irvine A; Delrot S
    BMC Plant Biol; 2020 Jan; 20(1):41. PubMed ID: 31992236
    [TBL] [Abstract][Full Text] [Related]  

  • 22. ABA and GA
    Murcia G; Fontana A; Pontin M; Baraldi R; Bertazza G; Piccoli PN
    Phytochemistry; 2017 Mar; 135():34-52. PubMed ID: 27998613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enantioselective analysis of free and glycosidically bound monoterpene polyols in Vitis vinifera L. cvs. Morio Muscat and Muscat Ottonel: evidence for an oxidative monoterpene metabolism in grapes.
    Luan F; Hampel D; Mosandl A; Wüst M
    J Agric Food Chem; 2004 Apr; 52(7):2036-41. PubMed ID: 15053548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of distinct transcriptional expression patterns of flavonoid biosynthesis in Cabernet Sauvignon grapes from east and west China.
    Li Q; He F; Zhu BQ; Liu B; Sun RZ; Duan CQ; Reeves MJ; Wang J
    Plant Physiol Biochem; 2014 Nov; 84():45-56. PubMed ID: 25240263
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolomic profile combined with transcriptomic analysis reveals the value of UV-C in improving the utilization of waste grape berries.
    Zhang K; Chen L; Wei M; Qiao H; Zhang S; Li Z; Fang Y; Chen K
    Food Chem; 2021 Nov; 363():130288. PubMed ID: 34120043
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic changes in monoterpene accumulation and biosynthesis during grape ripening in three Vitis vinifera L. cultivars.
    Yue X; Ren R; Ma X; Fang Y; Zhang Z; Ju Y
    Food Res Int; 2020 Nov; 137():109736. PubMed ID: 33233302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development.
    Shangguan L; Mu Q; Fang X; Zhang K; Jia H; Li X; Bao Y; Fang J
    PLoS One; 2017; 12(1):e0170571. PubMed ID: 28118385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S; Herrera JC; Forneck A; Griesser M
    Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay.
    Deluc LG; Quilici DR; Decendit A; Grimplet J; Wheatley MD; Schlauch KA; Mérillon JM; Cushman JC; Cramer GR
    BMC Genomics; 2009 May; 10():212. PubMed ID: 19426499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulated deficit irrigation strategies affect the terpene accumulation in Gewürztraminer (Vitis vinifera L.) grapes grown in the Okanagan Valley.
    Kovalenko Y; Tindjau R; Madilao LL; Castellarin SD
    Food Chem; 2021 Mar; 341(Pt 2):128172. PubMed ID: 33039736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VviWRKY40, a WRKY Transcription Factor, Regulates Glycosylated Monoterpenoid Production by
    Li X; He L; An X; Yu K; Meng N; Duan CQ; Pan QH
    Genes (Basel); 2020 Apr; 11(5):. PubMed ID: 32365554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of cluster zone leaf removal on monoterpene profiles of Sauvignon Blanc grapes and wines.
    Yue X; Ma X; Tang Y; Wang Y; Wu B; Jiao X; Zhang Z; Ju Y
    Food Res Int; 2020 May; 131():109028. PubMed ID: 32247455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptome profiling of spike provides expression features of genes related to terpene biosynthesis in lavender.
    Guo D; Kang K; Wang P; Li M; Huang X
    Sci Rep; 2020 Apr; 10(1):6933. PubMed ID: 32332830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptomic and Metabolic Analyses Provide New Insights into the Effects of Exogenous Sucrose on Monoterpene Synthesis in "Muscat Hamburg" Grapes.
    Yue X; Liu S; Wei S; Fang Y; Zhang Z; Ju Y
    J Agric Food Chem; 2021 Apr; 69(14):4164-4176. PubMed ID: 33787258
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea.
    Agudelo-Romero P; Erban A; Rego C; Carbonell-Bejerano P; Nascimento T; Sousa L; Martínez-Zapater JM; Kopka J; Fortes AM
    J Exp Bot; 2015 Apr; 66(7):1769-85. PubMed ID: 25675955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptome and Metabolomics Integrated Analysis Reveals Terpene Synthesis Genes Controlling Linalool Synthesis in Grape Berries.
    Liu S; Shan B; Zhou X; Gao W; Liu Y; Zhu B; Sun L
    J Agric Food Chem; 2022 Jul; 70(29):9084-9094. PubMed ID: 35820041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma.
    Li Y; He L; Song Y; Zhang P; Chen D; Guan L; Liu S
    BMC Plant Biol; 2023 Mar; 23(1):171. PubMed ID: 37003985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tissue-specific mRNA expression profiling in grape berry tissues.
    Grimplet J; Deluc LG; Tillett RL; Wheatley MD; Schlauch KA; Cramer GR; Cushman JC
    BMC Genomics; 2007 Jun; 8():187. PubMed ID: 17584945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascorbate metabolism and the developmental demand for tartaric and oxalic acids in ripening grape berries.
    Melino VJ; Soole KL; Ford CM
    BMC Plant Biol; 2009 Dec; 9():145. PubMed ID: 19995454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in transcription of cytokinin metabolism and signalling genes in grape (Vitis vinifera L.) berries are associated with the ripening-related increase in isopentenyladenine.
    Böttcher C; Burbidge CA; Boss PK; Davies C
    BMC Plant Biol; 2015 Sep; 15():223. PubMed ID: 26377914
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.