These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26444611)

  • 1. Quantifying local characteristics of velocity, aggregation and hematocrit of human erythrocytes in a microchannel flow.
    Kaliviotis E; Dusting J; Sherwood JM; Balabani S
    Clin Hemorheol Microcirc; 2015 Sep; 63(2):123-48. PubMed ID: 26444611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel.
    Sherwood JM; Kaliviotis E; Dusting J; Balabani S
    Biomech Model Mechanobiol; 2014 Apr; 13(2):259-73. PubMed ID: 23114881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of red blood cell aggregation on perfusion of an artificial microvascular network.
    Reinhart WH; Piety NZ; Shevkoplyas SS
    Microcirculation; 2017 Jul; 24(5):. PubMed ID: 27647727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of aggregation of red cells and linear velocity gradients on the correlation-based method for quantitative IVUS blood flow at 20 MHz.
    Lupotti FA; Zimmer A; Daronat M; Foster FS; van Der Steen AF; Cloutier G
    Ultrasound Med Biol; 2004 Feb; 30(2):205-14. PubMed ID: 14998673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation.
    Mehri R; Mavriplis C; Fenech M
    J Vis Exp; 2015 Jun; (100):e52719. PubMed ID: 26065667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale simulation of red blood cell aggregation in shear flows.
    Xu D; Kaliviotis E; Munjiza A; Avital E; Ji C; Williams J
    J Biomech; 2013 Jul; 46(11):1810-7. PubMed ID: 23809770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations.
    Kang YJ
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28878199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry.
    Kaliviotis E; Yianneskis M
    Proc Inst Mech Eng H; 2007 Nov; 221(8):887-97. PubMed ID: 18161248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fibrinogen and alpha2-macroglobulin and their apheretic elimination on general blood rheology and rheological characteristics of red blood cell aggregates.
    Kirschkamp T; Schmid-Schönbein H; Weinberger A; Smeets R
    Ther Apher Dial; 2008 Oct; 12(5):360-7. PubMed ID: 18937718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of red blood cell hyperaggregation on the rat microcirculation blood flow.
    Durussel JJ; Berthault MF; Guiffant G; Dufaux J
    Acta Physiol Scand; 1998 May; 163(1):25-32. PubMed ID: 9648620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of erythrocyte aggregation on radial migration of platelet-sized spherical particles in shear flow.
    Guilbert C; Chayer B; Allard L; Yu FTH; Cloutier G
    J Biomech; 2017 Aug; 61():26-33. PubMed ID: 28720200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube.
    Ji HS; Lee SJ
    Clin Hemorheol Microcirc; 2008; 40(1):19-30. PubMed ID: 18791264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial distributions of red blood cells significantly alter local haemodynamics.
    Sherwood JM; Holmes D; Kaliviotis E; Balabani S
    PLoS One; 2014; 9(6):e100473. PubMed ID: 24950214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of red blood cell aggregation in shear flow.
    Lim B; Bascom PA; Cobbold RS
    Biorheology; 1997; 34(6):423-41. PubMed ID: 9640357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.