These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26444611)

  • 41. Red blood cell velocity profiles in skeletal muscle venules at low flow rates are described by the Casson model.
    Das B; Bishop JJ; Kim S; Meiselman HJ; Johnson PC; Popel AS
    Clin Hemorheol Microcirc; 2007; 36(3):217-33. PubMed ID: 17361024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local Hematocrit Fluctuation Induced by Malaria-Infected Red Blood Cells and Its Effect on Microflow.
    Wang T; Xing Z
    Biomed Res Int; 2018; 2018():8065252. PubMed ID: 29850568
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Blood rheometer based on microflow manipulation of continuous blood flows using push-and-back mechanism.
    Kang YJ
    Anal Methods; 2021 Oct; 13(41):4871-4883. PubMed ID: 34586112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Opposite effects of red blood cell aggregation on resistance to blood flow.
    Vicaut E
    J Cardiovasc Surg (Torino); 1995 Aug; 36(4):361-8. PubMed ID: 7593148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationship between velocity profile and ultrasound echogenicity in pulsatile blood flows.
    Yeom E; Lee SJ
    Clin Hemorheol Microcirc; 2015; 59(3):197-209. PubMed ID: 24002117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative hemorheology.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2013; 53(1-2):61-70. PubMed ID: 22951622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Temperature-dependent threshold shear stress of red blood cell aggregation.
    Lim HJ; Lee YJ; Nam JH; Chung S; Shin S
    J Biomech; 2010 Feb; 43(3):546-50. PubMed ID: 19878949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spatial variation of blood viscosity: modelling using shear fields measured by a μPIV based technique.
    Kaliviotis E; Dusting J; Balabani S
    Med Eng Phys; 2011 Sep; 33(7):824-31. PubMed ID: 20943426
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sodium alginate as viscosity modifier may induce aggregation of red blood cells.
    Zhao L; You G; Liao F; Kan X; Wang B; Sun Q; Xu H; Han D; Zhou H
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Oct; 38(5):267-76. PubMed ID: 20831352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrasonic backscatter from rat blood in aggregating media under in vitro rotational flow.
    Nam KH; Paeng DG; Choi MJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):270-9. PubMed ID: 19251514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Blood low shear rate rheometry: influence of fibrinogen level and hematocrit on slip and migrational effects.
    Picart C; Piau JM; Galliard H; Carpentier P
    Biorheology; 1998; 35(4-5):335-53. PubMed ID: 10474659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.
    Lerche D; Frömer D
    Biorheology; 2001; 38(2-3):249-62. PubMed ID: 11381179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of red blood cell aggregation on myocardial hematocrit gradient using two approaches to increase aggregation.
    Yalcin O; Aydin F; Ulker P; Uyuklu M; Gungor F; Armstrong JK; Meiselman HJ; Baskurt OK
    Am J Physiol Heart Circ Physiol; 2006 Feb; 290(2):H765-71. PubMed ID: 16172155
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of pegylated hamster red blood cells on microcirculation.
    Chen PC; Huang W; Stassinopoulos A; Cheung AT
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(4):295-309. PubMed ID: 18649167
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrasonic backscatter from flowing whole blood. I: Dependence on shear rate and hematocrit.
    Yuan YW; Shung KK
    J Acoust Soc Am; 1988 Jul; 84(1):52-8. PubMed ID: 3411055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Relationship between red blood cell aggregation and dextran molecular mass.
    Bosek M; Ziomkowska B; Pyskir J; Wybranowski T; Pyskir M; Cyrankiewicz M; Napiórkowska M; Durmowicz M; Kruszewski S
    Sci Rep; 2022 Nov; 12(1):19751. PubMed ID: 36396711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.