BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26445026)

  • 1. A combinatorial approach towards the design of nanofibrous scaffolds for chondrogenesis.
    Ahmed M; Ramos TA; Damanik F; Quang Le B; Wieringa P; Bennink M; van Blitterswijk C; de Boer J; Moroni L
    Sci Rep; 2015 Oct; 5():14804. PubMed ID: 26445026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of cartilage regeneration on 3D collagen-polycaprolactone scaffolds: Evaluation of growth media in static and in perfusion bioreactor dynamic culture.
    Theodoridis K; Aggelidou E; Manthou M; Demiri E; Bakopoulou A; Kritis A
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110403. PubMed ID: 31400614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering.
    Dai W; Kawazoe N; Lin X; Dong J; Chen G
    Biomaterials; 2010 Mar; 31(8):2141-52. PubMed ID: 19962751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redifferentiation of dedifferentiated bovine chondrocytes when cultured in vitro in a PLGA-collagen hybrid mesh.
    Chen G; Sato T; Ushida T; Hirochika R; Tateishi T
    FEBS Lett; 2003 May; 542(1-3):95-9. PubMed ID: 12729905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design.
    Zhang X; Wu Y; Pan Z; Sun H; Wang J; Yu D; Zhu S; Dai J; Chen Y; Tian N; Heng BC; Coen ND; Xu H; Ouyang H
    Acta Biomater; 2016 Sep; 42():329-340. PubMed ID: 27345139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenic potential of electrospun nanofibres for cartilage tissue engineering.
    Wimpenny I; Ashammakhi N; Yang Y
    J Tissue Eng Regen Med; 2012 Jul; 6(7):536-49. PubMed ID: 21800437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold.
    Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G
    J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration.
    Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the potential of novel PCL-PPDX biodegradable scaffolds as support materials for cartilage tissue engineering.
    Chaim IA; Sabino MA; Mendt M; Müller AJ; Ajami D
    J Tissue Eng Regen Med; 2012 Apr; 6(4):272-9. PubMed ID: 21548137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a scaffold fabricated thermally from acetylated PLGA on the formation of engineered cartilage.
    Kang SW; Lee SJ; Kim JS; Choi EH; Cha BH; Shim JH; Cho DW; Lee SH
    Macromol Biosci; 2011 Feb; 11(2):267-74. PubMed ID: 21077228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Magnetic Nanoparticle-Labeled Chondrocytes Cultivated on a Type II Collagen-Chitosan/Poly(Lactic-co-Glycolic) Acid Biphasic Scaffold.
    Su JY; Chen SH; Chen YP; Chen WC
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28054960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes.
    Choi KH; Choi BH; Park SR; Kim BJ; Min BH
    Biomaterials; 2010 Jul; 31(20):5355-65. PubMed ID: 20394983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering.
    Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L
    Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis.
    Munirah S; Kim SH; Ruszymah BH; Khang G
    Eur Cell Mater; 2008 Feb; 15():41-52. PubMed ID: 18288632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering.
    Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B
    J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultured cell-derived extracellular matrix scaffolds for tissue engineering.
    Lu H; Hoshiba T; Kawazoe N; Koda I; Song M; Chen G
    Biomaterials; 2011 Dec; 32(36):9658-66. PubMed ID: 21937104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds.
    Park GE; Pattison MA; Park K; Webster TJ
    Biomaterials; 2005 Jun; 26(16):3075-82. PubMed ID: 15603802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.