These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26445153)

  • 41. Flexibility in intercepting moving objects.
    Brenner E; Smeets JB
    J Vis; 2007 Nov; 7(5):14.1-17. PubMed ID: 18217854
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial and temporal constraints on performance in children with movement co-ordination problems.
    Estil LB; Ingvaldsen RP; Whiting HT
    Exp Brain Res; 2002 Nov; 147(2):153-61. PubMed ID: 12410330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual signals contribute to the coding of gaze direction.
    Blouin J; Amade N; Vercher JL; Teasdale N; Gauthier GM
    Exp Brain Res; 2002 Jun; 144(3):281-92. PubMed ID: 12021810
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of manipulating relative and absolute motion information during observational learning of an aiming task.
    Al-Abood SA; Davids K; Bennett SJ; Ashford D; Martinez Marin M
    J Sports Sci; 2001 Jul; 19(7):507-20. PubMed ID: 11461054
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatial coincidence of intentional actions modulates an implicit visuomotor control.
    Abekawa N; Gomi H
    J Neurophysiol; 2010 May; 103(5):2717-27. PubMed ID: 20237310
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The temporal and spatial limits of compensation for fixational eye movements.
    Wallis G
    Vision Res; 2006 Sep; 46(18):2848-58. PubMed ID: 16643979
    [TBL] [Abstract][Full Text] [Related]  

  • 47. State anxiety and visual attention: the role of the quiet eye period in aiming to a far target.
    Behan M; Wilson M
    J Sports Sci; 2008 Jan; 26(2):207-15. PubMed ID: 17926174
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish.
    Ben-Simon A; Ben-Shahar O; Vasserman G; Segev R
    J Exp Biol; 2012 Dec; 215(Pt 24):4248-54. PubMed ID: 22972882
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synergistic control of joint angle variability: influence of target shape.
    Krüger M; Borbély B; Eggert T; Straube A
    Hum Mov Sci; 2012 Oct; 31(5):1071-89. PubMed ID: 22244105
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Active gaze, visual look-ahead, and locomotor control.
    Wilkie RM; Wann JP; Allison RS
    J Exp Psychol Hum Percept Perform; 2008 Oct; 34(5):1150-64. PubMed ID: 18823202
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A unified fielder theory for interception of moving objects either above or below the horizon.
    Sugar TG; McBeath MK; Wang Z
    Psychon Bull Rev; 2006 Oct; 13(5):908-17. PubMed ID: 17328394
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cortical dynamics of anticipatory mechanisms in interception: a neuromagnetic study.
    Senot P; Baillet S; Renault B; Berthoz A
    J Cogn Neurosci; 2008 Oct; 20(10):1827-38. PubMed ID: 18370604
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of gaze on vection from jittering, oscillating, and purely radial optic flow.
    Palmisano S; Kim J
    Atten Percept Psychophys; 2009 Nov; 71(8):1842-53. PubMed ID: 19933567
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical acceleration cancellation: a viable interception strategy?
    Rozendaal LA; van Soest AJ
    Biol Cybern; 2003 Dec; 89(6):415-25. PubMed ID: 14673653
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intercepting virtual balls approaching under different gravity conditions: evidence for spatial prediction.
    Russo M; Cesqui B; La Scaleia B; Ceccarelli F; Maselli A; Moscatelli A; Zago M; Lacquaniti F; d'Avella A
    J Neurophysiol; 2017 Oct; 118(4):2421-2434. PubMed ID: 28768737
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Trade-offs between gaze and working memory use.
    Droll JA; Hayhoe MM
    J Exp Psychol Hum Percept Perform; 2007 Dec; 33(6):1352-65. PubMed ID: 18085948
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fractional-order information in the visual control of lateral locomotor interception.
    Bootsma RJ; Ledouit S; Casanova R; Zaal FT
    J Exp Psychol Hum Percept Perform; 2016 Apr; 42(4):517-29. PubMed ID: 26569338
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Did you see that? Dissociating advanced visual information and ball flight constrains perception and action processes during one-handed catching.
    Panchuk D; Davids K; Sakadjian A; Macmahon C; Parrington L
    Acta Psychol (Amst); 2013 Mar; 142(3):394-401. PubMed ID: 23435115
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Auditory psychomotor coordination and visual search performance.
    Perrott DR; Saberi K; Brown K; Strybel TZ
    Percept Psychophys; 1990 Sep; 48(3):214-26. PubMed ID: 2216648
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Potential Systematic Interception Errors are Avoided When Tracking the Target with One's Eyes.
    Malla C; Smeets JBJ; Brenner E
    Sci Rep; 2017 Sep; 7(1):10793. PubMed ID: 28883471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.