These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26445214)

  • 1. Accelerating the Smith-Waterman algorithm with interpair pruning and band optimization for the all-pairs comparison of base sequences.
    Okada D; Ino F; Hagihara K
    BMC Bioinformatics; 2015 Oct; 16():321. PubMed ID: 26445214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment.
    Manavski SA; Valle G
    BMC Bioinformatics; 2008 Mar; 9 Suppl 2(Suppl 2):S10. PubMed ID: 18387198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADEPT: a domain independent sequence alignment strategy for gpu architectures.
    Awan MG; Deslippe J; Buluc A; Selvitopi O; Hofmeyr S; Oliker L; Yelick K
    BMC Bioinformatics; 2020 Sep; 21(1):406. PubMed ID: 32933482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL for long DNA sequences.
    Rucci E; Garcia C; Botella G; De Giusti A; Naiouf M; Prieto-Matias M
    BMC Syst Biol; 2018 Nov; 12(Suppl 5):96. PubMed ID: 30458766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CUDASW++ 3.0: accelerating Smith-Waterman protein database search by coupling CPU and GPU SIMD instructions.
    Liu Y; Wirawan A; Schmidt B
    BMC Bioinformatics; 2013 Apr; 14():117. PubMed ID: 23557111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda.
    Wang S; Kim J; Jiang X; Brunner SF; Ohno-Machado L
    BMC Med Genomics; 2014; 7 Suppl 1(Suppl 1):S9. PubMed ID: 25077821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.
    Lee ST; Lin CY; Hung CL
    Biomed Res Int; 2013; 2013():721738. PubMed ID: 23653898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.
    Rognes T
    BMC Bioinformatics; 2011 Jun; 12():221. PubMed ID: 21631914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA sequences alignment in multi-GPUs: acceleration and energy payoff.
    Pérez-Serrano J; Sandes E; Magalhaes Alves de Melo AC; Ujaldón M
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):421. PubMed ID: 30453877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Mapping of Smith-Waterman Sequence Database Searches onto CUDA-Enabled GPUs.
    Huang LT; Wu CC; Lai LF; Li YJ
    Biomed Res Int; 2015; 2015():185179. PubMed ID: 26339591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SW#-GPU-enabled exact alignments on genome scale.
    Korpar M; Šikic M
    Bioinformatics; 2013 Oct; 29(19):2494-5. PubMed ID: 23864730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parallel Tiled Codes Implementing the Smith-Waterman Alignment Algorithm for Two and Three Sequences.
    Palkowski M; Bielecki W
    J Comput Biol; 2018 Oct; 25(10):1106-1119. PubMed ID: 29993269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CUDASW++: optimizing Smith-Waterman sequence database searches for CUDA-enabled graphics processing units.
    Liu Y; Maskell DL; Schmidt B
    BMC Res Notes; 2009 May; 2():73. PubMed ID: 19416548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FPGASW: Accelerating Large-Scale Smith-Waterman Sequence Alignment Application with Backtracking on FPGA Linear Systolic Array.
    Fei X; Dan Z; Lina L; Xin M; Chunlei Z
    Interdiscip Sci; 2018 Mar; 10(1):176-188. PubMed ID: 28432608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 160-fold acceleration of the Smith-Waterman algorithm using a field programmable gate array (FPGA).
    Li IT; Shum W; Truong K
    BMC Bioinformatics; 2007 Jun; 8():185. PubMed ID: 17555593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith-Waterman and FASTA algorithms.
    Pearson WR
    Genomics; 1991 Nov; 11(3):635-50. PubMed ID: 1774068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CUDASW++2.0: enhanced Smith-Waterman protein database search on CUDA-enabled GPUs based on SIMT and virtualized SIMD abstractions.
    Liu Y; Schmidt B; Maskell DL
    BMC Res Notes; 2010 Apr; 3():93. PubMed ID: 20370891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pairwise alignment for very long nucleic acid sequences.
    Sun J; Chen K; Hao Z
    Biochem Biophys Res Commun; 2018 Jul; 502(3):313-317. PubMed ID: 29800571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSW library: an SIMD Smith-Waterman C/C++ library for use in genomic applications.
    Zhao M; Lee WP; Garrison EP; Marth GT
    PLoS One; 2013; 8(12):e82138. PubMed ID: 24324759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
    Khaled H; Faheem Hel D; El Gohary R
    Int J Data Min Bioinform; 2015; 12(3):313-27. PubMed ID: 26510289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.