These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26445223)

  • 1. Spatially, Temporally, and Quantitatively Controlled Delivery of Broad Range of Molecules into Selected Cells through Plasmonic Nanotubes.
    Messina GC; Dipalo M; La Rocca R; Zilio P; Caprettini V; Proietti Zaccaria R; Toma A; Tantussi F; Berdondini L; De Angelis F
    Adv Mater; 2015 Nov; 27(44):7145-9. PubMed ID: 26445223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and ex vivo strategies for intracellular delivery.
    Stewart MP; Sharei A; Ding X; Sahay G; Langer R; Jensen KF
    Nature; 2016 Oct; 538(7624):183-192. PubMed ID: 27734871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Backpressure Single-Cell Point Constriction for Cytosolic Delivery Based on Rapid Membrane Deformations.
    Xing X; Pan Y; Yobas L
    Anal Chem; 2018 Feb; 90(3):1836-1844. PubMed ID: 29308899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostraw-electroporation system for highly efficient intracellular delivery and transfection.
    Xie X; Xu AM; Leal-Ortiz S; Cao Y; Garner CC; Melosh NA
    ACS Nano; 2013 May; 7(5):4351-8. PubMed ID: 23597131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Femtosecond laser-assisted optoporation for drug and gene delivery into single mammalian cells.
    Soman P; Zhang W; Umeda A; Zhang ZJ; Chen S
    J Biomed Nanotechnol; 2011 Jun; 7(3):334-41. PubMed ID: 21830473
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient intracellular transduction in three-dimensional gradients for programming cell fate.
    Eltaher HM; Yang J; Shakesheff KM; Dixon JE
    Acta Biomater; 2016 Sep; 41():181-92. PubMed ID: 27265151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular Delivery of Bioactive Cargos to Hard-to-Transfect Cells Using Carbon Nanosyringe Arrays under an Applied Centrifugal g-Force.
    Choi M; Lee SH; Kim WB; Gujrati V; Kim D; Lee J; Kim JI; Kim H; Saw PE; Jon S
    Adv Healthc Mater; 2016 Jan; 5(1):101-7. PubMed ID: 25846396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-time assessment of nanoparticle-mediated antigen delivery and cell response.
    Cunha-Matos CA; Millington OR; Wark AW; Zagnoni M
    Lab Chip; 2016 Aug; 16(17):3374-81. PubMed ID: 27455884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances of controlled drug delivery using microfluidic platforms.
    Sanjay ST; Zhou W; Dou M; Tavakoli H; Ma L; Xu F; Li X
    Adv Drug Deliv Rev; 2018 Mar; 128():3-28. PubMed ID: 28919029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular filter on-chip design for drug targeting use.
    Aziz MS; Jukgoljan B; Daud S; Tan TS; Ali J; Yupapin PP
    Artif Cells Nanomed Biotechnol; 2013 Jun; 41(3):178-83. PubMed ID: 22991944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled Drug Delivery Using Microdevices.
    Sanjay ST; Dou M; Fu G; Xu F; Li X
    Curr Pharm Biotechnol; 2016; 17(9):772-87. PubMed ID: 26813304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticles for intracellular-targeted drug delivery.
    Paulo CS; Pires das Neves R; Ferreira LS
    Nanotechnology; 2011 Dec; 22(49):494002. PubMed ID: 22101232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable microsphere-mediated cell perforation in microfluidic channel using femtosecond laser.
    Ishii A; Ariyasu K; Mitsuhashi T; Heinemann D; Heisterkamp A; Terakawa M
    J Biomed Opt; 2016 May; 21(5):55001. PubMed ID: 27156714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and application of porous gold nanoparticles as 2-photon luminescence imaging agents: 20-fold brighter than gold nanorods.
    Park JH; Park J; Kim S; Kim SH; Lee TG; Lee JY; Wi JS
    J Biophotonics; 2018 Feb; 11(2):. PubMed ID: 28976643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents.
    Huang TY; Sakar MS; Mao A; Petruska AJ; Qiu F; Chen XB; Kennedy S; Mooney D; Nelson BJ
    Adv Mater; 2015 Nov; 27(42):6644-50. PubMed ID: 26415002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ amplification of intracellular microRNA with MNAzyme nanodevices for multiplexed imaging, logic operation, and controlled drug release.
    Zhang P; He Z; Wang C; Chen J; Zhao J; Zhu X; Li CZ; Min Q; Zhu JJ
    ACS Nano; 2015 Jan; 9(1):789-98. PubMed ID: 25525669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Based Optical Microscopes on Chip.
    Paiè P; Martínez Vázquez R; Osellame R; Bragheri F; Bassi A
    Cytometry A; 2018 Oct; 93(10):987-996. PubMed ID: 30211977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidic Device for Modulation of Organellar Heterogeneity in Live Single Cells.
    Wada KI; Hosokawa K; Ito Y; Maeda M
    Anal Sci; 2021 Mar; 37(3):499-503. PubMed ID: 33281140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reengineering device translation timelines.
    Watson JT
    Sci Transl Med; 2012 Feb; 4(122):122ed1. PubMed ID: 22344517
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.