BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2591 related articles for article (PubMed ID: 26445347)

  • 1. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Even the Warburg effect can be oxidized: metabolic cooperation and tumor development].
    Cordier-Bussat M; Thibert C; Sujobert P; Genestier L; Fontaine É; Billaud M
    Med Sci (Paris); 2018; 34(8-9):701-708. PubMed ID: 30230466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dichotomous role of the glycolytic metabolism pathway in cancer metastasis: Interplay with the complex tumor microenvironment and novel therapeutic strategies.
    El Hassouni B; Granchi C; Vallés-Martí A; Supadmanaba IGP; Bononi G; Tuccinardi T; Funel N; Jimenez CR; Peters GJ; Giovannetti E; Minutolo F
    Semin Cancer Biol; 2020 Feb; 60():238-248. PubMed ID: 31445217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking metabolic reprogramming to therapy resistance in cancer.
    Morandi A; Indraccolo S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):1-6. PubMed ID: 28065746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity in Cancer Metabolism: New Concepts in an Old Field.
    Gentric G; Mieulet V; Mechta-Grigoriou F
    Antioxid Redox Signal; 2017 Mar; 26(9):462-485. PubMed ID: 27228792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oncogenes and inflammation rewire host energy metabolism in the tumor microenvironment: RAS and NFκB target stromal MCT4.
    Martinez-Outschoorn UE; Curry JM; Ko YH; Lin Z; Tuluc M; Cognetti D; Birbe RC; Pribitkin E; Bombonati A; Pestell RG; Howell A; Sotgia F; Lisanti MP
    Cell Cycle; 2013 Aug; 12(16):2580-97. PubMed ID: 23860378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linking tumor glycolysis and immune evasion in cancer: Emerging concepts and therapeutic opportunities.
    Ganapathy-Kanniappan S
    Biochim Biophys Acta Rev Cancer; 2017 Aug; 1868(1):212-220. PubMed ID: 28400131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Warburg effect to Reverse Warburg effect; the new horizons of anti-cancer therapy.
    Benny S; Mishra R; Manojkumar MK; Aneesh TP
    Med Hypotheses; 2020 Nov; 144():110216. PubMed ID: 33254523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production, and early tumor growth.
    Guido C; Whitaker-Menezes D; Lin Z; Pestell RG; Howell A; Zimmers TA; Casimiro MC; Aquila S; Ando' S; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Oncotarget; 2012 Aug; 3(8):798-810. PubMed ID: 22878233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma.
    Jiang E; Xu Z; Wang M; Yan T; Huang C; Zhou X; Liu Q; Wang L; Chen Y; Wang H; Liu K; Shao Z; Shang Z
    FASEB J; 2019 Apr; 33(4):5690-5703. PubMed ID: 30698991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment.
    Martinez-Outschoorn UE; Pavlides S; Howell A; Pestell RG; Tanowitz HB; Sotgia F; Lisanti MP
    Int J Biochem Cell Biol; 2011 Jul; 43(7):1045-51. PubMed ID: 21300172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic reprogramming of the tumour microenvironment.
    Xing Y; Zhao S; Zhou BP; Mi J
    FEBS J; 2015 Oct; 282(20):3892-8. PubMed ID: 26255648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging roles of Myc in stem cell biology and novel tumor therapies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2018 Jul; 37(1):173. PubMed ID: 30053872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic orchestration between cancer cells and tumor microenvironment as a co-evolutionary source of chemoresistance in ovarian cancer: a therapeutic implication.
    Suh DH; Kim HS; Kim B; Song YS
    Biochem Pharmacol; 2014 Nov; 92(1):43-54. PubMed ID: 25168677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Metabolic reprogramming in cancer: the art of balance].
    Yi M; Xiang B; Li X; Li G
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2013 Nov; 38(11):1177-87. PubMed ID: 24316928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 130.