These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26445400)

  • 1. Plant fitness in a rapidly changing world.
    Anderson JT
    New Phytol; 2016 Apr; 210(1):81-7. PubMed ID: 26445400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitness declines towards range limits and local adaptation to climate affect dispersal evolution during climate-induced range shifts.
    Hargreaves AL; Bailey SF; Laird RA
    J Evol Biol; 2015 Aug; 28(8):1489-501. PubMed ID: 26079367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenological shifts of native and invasive species under climate change: insights from the Boechera-Lythrum model.
    Colautti RI; Ågren J; Anderson JT
    Philos Trans R Soc Lond B Biol Sci; 2017 Jan; 372(1712):. PubMed ID: 27920377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.
    Alexander JM
    Proc Biol Sci; 2013 Sep; 280(1767):20131446. PubMed ID: 23902908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkeyflower.
    Kooyers NJ; Colicchio JM; Greenlee AB; Patterson E; Handloser NT; Blackman BK
    Am Nat; 2019 Oct; 194(4):541-557. PubMed ID: 31490725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the evolutionary dynamics of seasonal adaptation to novel climates in Arabidopsis thaliana.
    Fournier-Level A; Perry EO; Wang JA; Braun PT; Migneault A; Cooper MD; Metcalf CJ; Schmitt J
    Proc Natl Acad Sci U S A; 2016 May; 113(20):E2812-21. PubMed ID: 27140640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.
    Nunney L
    J Hered; 2016 Jan; 107(1):15-24. PubMed ID: 26563131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics.
    Shaw RG; Etterson JR
    New Phytol; 2012 Sep; 195(4):752-765. PubMed ID: 22816320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change shifts natural selection and the adaptive potential of the perennial forb Boechera stricta in the Rocky Mountains.
    Bemmels JB; Anderson JT
    Evolution; 2019 Nov; 73(11):2247-2262. PubMed ID: 31584183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate-based seed transfer of a widespread shrub: population shifts, restoration strategies, and the trailing edge.
    Richardson BA; Chaney L
    Ecol Appl; 2018 Dec; 28(8):2165-2174. PubMed ID: 30198207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary traps and range shifts in a rapidly changing world.
    Hale R; Morrongiello JR; Swearer SE
    Biol Lett; 2016 Jun; 12(6):. PubMed ID: 27330167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Running to stand still: adaptation and the response of plants to rapid climate change.
    Jump AS; Peñuelas J
    Ecol Lett; 2005 Sep; 8(9):1010-1020. PubMed ID: 34517682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal heterogeneity in precipitation patterns explain population-level germination strategies in an edaphic specialist.
    Torres-Martínez L; Weldy P; Levy M; Emery NC
    Ann Bot; 2017 Jan; 119(2):253-265. PubMed ID: 27551027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maladaptive Shifts in Life History in a Changing Environment.
    Cotto O; Sandell L; Chevin LM; Ronce O
    Am Nat; 2019 Oct; 194(4):558-573. PubMed ID: 31490719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plants maintain climate fidelity in the face of dynamic climate change.
    Wang Y; Pineda-Munoz S; McGuire JL
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2201946119. PubMed ID: 36745797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural selection on the Arabidopsis thaliana genome in present and future climates.
    Exposito-Alonso M; ; Burbano HA; Bossdorf O; Nielsen R; Weigel D
    Nature; 2019 Sep; 573(7772):126-129. PubMed ID: 31462776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates.
    Gremer JR; Chiono A; Suglia E; Bontrager M; Okafor L; Schmitt J
    Am J Bot; 2020 Feb; 107(2):350-363. PubMed ID: 32056208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plants and climate change: complexities and surprises.
    Parmesan C; Hanley ME
    Ann Bot; 2015 Nov; 116(6):849-64. PubMed ID: 26555281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facilitating climate-change-induced range shifts across continental land-use barriers.
    Robillard CM; Coristine LE; Soares RN; Kerr JT
    Conserv Biol; 2015 Dec; 29(6):1586-95. PubMed ID: 26193759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for adaptation to climate change: family-level variation in fitness-related traits and their responses to heat waves in a snail population.
    Leicht K; Seppälä K; Seppälä O
    BMC Evol Biol; 2017 Jun; 17(1):140. PubMed ID: 28619023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.