BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 26445438)

  • 21. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production.
    Nazaret C; Heiske M; Thurley K; Mazat JP
    J Theor Biol; 2009 Jun; 258(3):455-64. PubMed ID: 19007794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Substrate cycles in the central metabolism of maize root tips under hypoxia.
    Alonso AP; Raymond P; Rolin D; Dieuaide-Noubhani M
    Phytochemistry; 2007; 68(16-18):2222-31. PubMed ID: 17559894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Measurement and Analysis of Extracellular Acid Production to Determine Glycolytic Rate.
    Mookerjee SA; Brand MD
    J Vis Exp; 2015 Dec; (106):e53464. PubMed ID: 26709455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH- generating enzymes in acrylamide treated rat brain.
    Aydın B
    Biomed Pharmacother; 2017 Mar; 87():476-481. PubMed ID: 28068639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts.
    Sin J; Andres AM; Taylor DJ; Weston T; Hiraumi Y; Stotland A; Kim BJ; Huang C; Doran KS; Gottlieb RA
    Autophagy; 2016; 12(2):369-80. PubMed ID: 26566717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial oxidative phosphorylation became functional under aglycemic hypoxia conditions in A549 cells.
    Öğünç Keçeci Y; İncesu Z
    Mol Biol Rep; 2022 Sep; 49(9):8219-8228. PubMed ID: 35834035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic changes in cytosolic and mitochondrial ATP levels in pancreatic acinar cells.
    Voronina SG; Barrow SL; Simpson AW; Gerasimenko OV; da Silva Xavier G; Rutter GA; Petersen OH; Tepikin AV
    Gastroenterology; 2010 May; 138(5):1976-87. PubMed ID: 20102715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers.
    Lark DS; Torres MJ; Lin CT; Ryan TE; Anderson EJ; Neufer PD
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C239-45. PubMed ID: 27335172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity.
    Dott W; Mistry P; Wright J; Cain K; Herbert KE
    Redox Biol; 2014; 2():224-33. PubMed ID: 24494197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methods to monitor and compare mitochondrial and glycolytic ATP production.
    Patergnani S; Baldassari F; De Marchi E; Karkucinska-Wieckowska A; Wieckowski MR; Pinton P
    Methods Enzymol; 2014; 542():313-32. PubMed ID: 24862273
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide.
    Hyslop PA; Hinshaw DB; Halsey WA; Schraufstätter IU; Sauerheber RD; Spragg RG; Jackson JH; Cochrane CG
    J Biol Chem; 1988 Feb; 263(4):1665-75. PubMed ID: 3338986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reversal of Warburg Effect and Reactivation of Oxidative Phosphorylation by Differential Inhibition of EGFR Signaling Pathways in Non-Small Cell Lung Cancer.
    De Rosa V; Iommelli F; Monti M; Fonti R; Votta G; Stoppelli MP; Del Vecchio S
    Clin Cancer Res; 2015 Nov; 21(22):5110-20. PubMed ID: 26216352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose metabolism and metabolic flexibility in blood platelets.
    Aibibula M; Naseem KM; Sturmey RG
    J Thromb Haemost; 2018 Nov; 16(11):2300-2314. PubMed ID: 30151891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity.
    Wang L; Schumann U; Liu Y; Prokopchuk O; Steinacker JM
    J Appl Physiol (1985); 2012 Dec; 113(11):1669-76. PubMed ID: 23042904
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic control of mitochondrial ATP synthesis.
    LaNoue KF; Jeffries FM; Radda GK
    Biochemistry; 1986 Nov; 25(23):7667-75. PubMed ID: 3026457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of metabolic flux distributions for MDCK cell growth in glutamine- and pyruvate-containing media.
    Sidorenko Y; Wahl A; Dauner M; Genzel Y; Reichl U
    Biotechnol Prog; 2008; 24(2):311-20. PubMed ID: 18215054
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Amytal on metabolism of perfused rat heart: relationship between glycolysis and oxidative phosphorylation.
    Nishiki K; Erecińska M; Wilson DF
    Am J Physiol; 1979 Nov; 237(5):C221-30. PubMed ID: 227272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.