These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 26445518)

  • 1. Design of matching layers for high-frequency ultrasonic transducers.
    Fei C; Ma J; Chiu CT; Williams JA; Fong W; Chen Z; Zhu B; Xiong R; Shi J; Hsiai TK; Shung KK; Zhou Q
    Appl Phys Lett; 2015 Sep; 107(12):123505. PubMed ID: 26445518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfabrication of stacks of acoustic matching layers for 15 MHz ultrasonic transducers.
    Manh T; Nguyen AT; Johansen TF; Hoff L
    Ultrasonics; 2014 Feb; 54(2):614-20. PubMed ID: 24041498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrawide Bandwidth High-Frequency Ultrasonic Transducers With Gradient Acoustic Impedance Matching Layer for Biomedical Imaging.
    Zhao J; Li Z; Fei C; Hou C; Wang D; Lou L; Chen D; Li D; Chen Z; Yang Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Jun; 69(6):1952-1959. PubMed ID: 35020592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of a novel high-impedance matching layer for high frequency (>30 MHz) ultrasonic transducers.
    Qian Y; Harris NR
    Ultrasonics; 2014 Feb; 54(2):586-91. PubMed ID: 24025461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impedance matching network for high frequency ultrasonic transducer for cellular applications.
    Kim MG; Yoon S; Kim HH; Shung KK
    Ultrasonics; 2016 Feb; 65():258-67. PubMed ID: 26442434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.
    Saffar S; Abdullah A
    Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application.
    Fang HJ; Chen Y; Wong CM; Qiu WB; Chan HL; Dai JY; Li Q; Yan QF
    Ultrasonics; 2016 Aug; 70():29-33. PubMed ID: 27125558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized Backing Layers Design for High Frequency Broad Bandwidth Ultrasonic Transducer.
    Hou C; Fei C; Li Z; Zhang S; Man J; Chen D; Wu R; Li D; Yang Y; Feng W
    IEEE Trans Biomed Eng; 2022 Jan; 69(1):475-481. PubMed ID: 34288870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfabricated 1-3 composite acoustic matching layers for 15 MHz transducers.
    Manh T; Jensen GU; Johansen TF; Hoff L
    Ultrasonics; 2013 Aug; 53(6):1141-9. PubMed ID: 23522684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnesium Alloy Matching Layer for High-Performance Transducer Applications.
    Wang Y; Tao J; Guo F; Li S; Huang X; Dong J; Cao W
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alumina/epoxy nanocomposite matching layers for high-frequency ultrasound transducer application.
    Zhou Q; Cha JH; Huang Y; Zhang R; Cao W; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jan; 56(1):213-9. PubMed ID: 19213648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel multi-layer polymer-metal structures for use in ultrasonic transducer impedance matching and backing absorber applications.
    Toda M; Thompson M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2818-27. PubMed ID: 21156377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):299-306. PubMed ID: 12322878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO3 single crystal.
    Zhou Q; Cannata JM; Guo H; Huang C; Marmarelis VZ; Shung KK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Jan; 52(1):127-33. PubMed ID: 15742569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer.
    Zhu K; Ma J; Qi X; Shen B; Liu Y; Sun E; Zhang R
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design considerations for piezoelectric polymer ultrasound transducers.
    Brown LF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1377-96. PubMed ID: 18238684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal.
    Zhou QF; Cannata J; Kirk Shung K
    Ultrasonics; 2006 Dec; 44 Suppl 1():e607-11. PubMed ID: 16797635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and Micro-Fabrication of Focused High-Frequency Needle Transducers for Medical Imaging.
    Nguyen TP; Choi J; Nguyen VT; Mondal S; Bui NT; Vu DD; Park S; Oh J
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AZ31B magnesium alloy matching layer for Lens-focused piezoelectric transducer application.
    Sun Y; Tao J; Guo F; Wang F; Dong J; Jin L; Li S; Huang X
    Ultrasonics; 2023 Jan; 127():106844. PubMed ID: 36095851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.