These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26445654)

  • 1. Effects of changing climate on aquatic habitat and connectivity for remnant populations of a wide-ranging frog species in an arid landscape.
    Pilliod DS; Arkle RS; Robertson JM; Murphy MA; Funk WC
    Ecol Evol; 2015 Sep; 5(18):3979-94. PubMed ID: 26445654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persistence at distributional edges: Columbia spotted frog habitat in the arid Great Basin, USA.
    Arkle RS; Pilliod DS
    Ecol Evol; 2015 Sep; 5(17):3704-24. PubMed ID: 26380699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facilitative interaction promotes occupancy of a desert amphibian across a climate gradient.
    Smith MM; Goldberg CS
    Oecologia; 2022 Mar; 198(3):815-823. PubMed ID: 35188593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regional variation in drivers of connectivity for two frog species (Rana pretiosa and R. luteiventris) from the U.S. Pacific Northwest.
    Robertson JM; Murphy MA; Pearl CA; Adams MJ; Páez-Vacas MI; Haig SM; Pilliod DS; Storfer A; Funk WC
    Mol Ecol; 2018 Jul; ():. PubMed ID: 30010212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining the responses of habitat suitability and connectivity to climate change for an East Asian endemic frog.
    Luo Z; Wang X; Yang S; Cheng X; Liu Y; Hu J
    Front Zool; 2021 Mar; 18(1):14. PubMed ID: 33771163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems.
    Inoue K; Berg DJ
    Glob Chang Biol; 2017 Jan; 23(1):94-107. PubMed ID: 27225328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE; Kronvang B; Larsen SE; Hoffmann CC; Jensen TS; Rasmussen EK
    Sci Total Environ; 2006 Jul; 365(1-3):223-37. PubMed ID: 16647104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future winters present a complex energetic landscape of decreased costs and reduced risk for a freeze-tolerant amphibian, the Wood Frog (Lithobates sylvaticus).
    Fitzpatrick MJ; Porter WP; Pauli JN; Kearney MR; Notaro M; Zuckerberg B
    Glob Chang Biol; 2020 Nov; 26(11):6350-6362. PubMed ID: 32871618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compounding effects of climate change reduce population viability of a montane amphibian.
    Kissel AM; Palen WJ; Ryan ME; Adams MJ
    Ecol Appl; 2019 Mar; 29(2):e01832. PubMed ID: 30589982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frog population viability under present and future climate conditions: a Bayesian state-space approach.
    McCaffery R; Solonen A; Crone E
    J Anim Ecol; 2012 Sep; 81(5):978-85. PubMed ID: 22574643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat selection by a threatened desert amphibian.
    Hinderer RK; Litt AR; McCaffery M
    Ecol Evol; 2021 Jan; 11(1):536-546. PubMed ID: 33437449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining dispersal, landscape connectivity and habitat suitability to assess climate-induced changes in the distribution of Cunningham's skink, Egernia cunninghami.
    Ofori BY; Stow AJ; Baumgartner JB; Beaumont LJ
    PLoS One; 2017; 12(9):e0184193. PubMed ID: 28873398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of precipitation change and neighboring plants on population dynamics of Bromus tectorum.
    Prevéy JS; Seastedt TR
    Oecologia; 2015 Nov; 179(3):765-75. PubMed ID: 26227366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.
    Castillo JA; Epps CW; Jeffress MR; Ray C; Rodhouse TJ; Schwalm D
    Ecol Appl; 2016 Sep; 26(6):1660-1676. PubMed ID: 27755691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China.
    Chen Y; Li Z; Fan Y; Wang H; Deng H
    Environ Res; 2015 May; 139():11-9. PubMed ID: 25682220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Range position and climate sensitivity: The structure of among-population demographic responses to climatic variation.
    Amburgey SM; Miller DAW; Campbell Grant EH; Rittenhouse TAG; Benard MF; Richardson JL; Urban MC; Hughson W; Brand AB; Davis CJ; Hardin CR; Paton PWC; Raithel CJ; Relyea RA; Scott AF; Skelly DK; Skidds DE; Smith CK; Werner EE
    Glob Chang Biol; 2018 Jan; 24(1):439-454. PubMed ID: 28833972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans.
    Papadaki C; Soulis K; Muñoz-Mas R; Martinez-Capel F; Zogaris S; Ntoanidis L; Dimitriou E
    Sci Total Environ; 2016 Jan; 540():418-28. PubMed ID: 26250864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Landscape connectivity among remnant populations of guanaco (
    Espinosa MI; Gouin N; Squeo FA; López D; Bertin A
    PeerJ; 2018; 6():e4429. PubMed ID: 29507827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserving stream fishes with changing climate: Assessing fish responses to changes in habitat over a large region.
    Tsang Y; Infante DM; Wang L; Krueger D; Wieferich D
    Sci Total Environ; 2021 Feb; 755(Pt 2):142503. PubMed ID: 33045606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreased winter severity increases viability of a montane frog population.
    McCaffery RM; Maxell BA
    Proc Natl Acad Sci U S A; 2010 May; 107(19):8644-9. PubMed ID: 20421473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.