These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26445904)

  • 1. Quantum chemical protocols for modeling reactions and spectra in astrophysical ice analogs: the challenging case of the C⁺ + H₂O reaction in icy grain mantles.
    Woon DE
    Phys Chem Chem Phys; 2015 Nov; 17(43):28705-18. PubMed ID: 26445904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Chemical Cluster Studies of Cation-Ice Reactions for Astrochemical Applications: Seeking Experimental Confirmation.
    Woon DE
    Acc Chem Res; 2021 Feb; 54(3):490-497. PubMed ID: 33444014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three milieux for interstellar chemistry: gas, dust, and ice.
    Herbst E
    Phys Chem Chem Phys; 2014 Feb; 16(8):3344-59. PubMed ID: 24220255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-space glycine formation via Strecker-type reactions activated by ice water dust mantles. A computational approach.
    Rimola A; Sodupe M; Ugliengo P
    Phys Chem Chem Phys; 2010; 12(20):5285-94. PubMed ID: 20358044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry.
    Jones AP
    R Soc Open Sci; 2016 Dec; 3(12):160224. PubMed ID: 28083090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space.
    Clements AR; Berk B; Cooke IR; Garrod RT
    Phys Chem Chem Phys; 2018 Feb; 20(8):5553-5568. PubMed ID: 29387847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Hydronium Ion (H
    Martinez R; Agnihotri AN; Boduch P; Domaracka A; Fulvio D; Muniz G; Palumbo ME; Rothard H; Strazzulla G
    J Phys Chem A; 2019 Sep; 123(37):8001-8008. PubMed ID: 31436998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ionization on infrared and electronic absorption spectra of methyl and ethyl formate in the gas phase and in astrophysical H2O ice: a computational study.
    Naganathappa M; Chaudhari A
    J Phys Chem A; 2011 May; 115(18):4743-56. PubMed ID: 21504217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical Distribution of the Ammonia Binding Energy at Interstellar Icy Grains: A New Computational Framework.
    Tinacci L; Germain A; Pantaleone S; Ferrero S; Ceccarelli C; Ugliengo P
    ACS Earth Space Chem; 2022 Jun; 6(6):1514-1526. PubMed ID: 35747467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of the hydrogen bonding in ice Ih by first-principles density function methods.
    Zhang P; Tian L; Zhang ZP; Shao G; Li JC
    J Chem Phys; 2012 Jul; 137(4):044504. PubMed ID: 22852628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prebiotic chemistry in icy grain mantles in space. An experimental and observational approach.
    Muñoz Caro GM; Dartois E
    Chem Soc Rev; 2013 Mar; 42(5):2173-85. PubMed ID: 23340705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-Phase vs. Grain-Surface Formation of Interstellar Complex Organic Molecules: A Comprehensive Quantum-Chemical Study.
    Martínez-Bachs B; Rimola A
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First Step in the Reaction of Zerovalent Iron with Water.
    Karlický F; Otyepka M
    J Chem Theory Comput; 2011 Sep; 7(9):2876-85. PubMed ID: 26605478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of glycine and other complex organic molecules in exploding ice mantles.
    Rawlings JM; Williams DA; Viti S; Cecchi-Pestellini C; Duley WW
    Faraday Discuss; 2014; 168():369-88. PubMed ID: 25302390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions of adsorbed CO₂ on water ice at low temperatures.
    Karssemeijer LJ; de Wijs GA; Cuppen HM
    Phys Chem Chem Phys; 2014 Aug; 16(29):15630-9. PubMed ID: 24955794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy.
    Allodi MA; Ioppolo S; Kelley MJ; McGuire BA; Blake GA
    Phys Chem Chem Phys; 2014 Feb; 16(8):3442-55. PubMed ID: 24394213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodesorption from low-temperature water ice in interstellar and circumsolar grains.
    Westley MS; Baragiola RA; Johnson RE; Baratta GA
    Nature; 1995 Feb; 373(6513):405-7. PubMed ID: 7830792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared spectra of amorphous and crystalline urea ices.
    Timón V; Maté B; Herrero VJ; Tanarro I
    Phys Chem Chem Phys; 2021 Oct; 23(39):22344-22351. PubMed ID: 34604879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the morphology of interstellar ice analogues after hydrogen atom exposure.
    Accolla M; Congiu E; Dulieu F; Manicò G; Chaabouni H; Matar E; Mokrane H; Lemaire JL; Pirronello V
    Phys Chem Chem Phys; 2011 May; 13(17):8037-45. PubMed ID: 21445409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer Generated Realistic Interstellar Icy Grain Models: Physicochemical Properties and Interaction with NH
    Germain A; Tinacci L; Pantaleone S; Ceccarelli C; Ugliengo P
    ACS Earth Space Chem; 2022 May; 6(5):1286-1298. PubMed ID: 35620318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.