These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 26445980)

  • 21. Epistasis and the Dynamics of Reversion in Molecular Evolution.
    McCandlish DM; Shah P; Plotkin JB
    Genetics; 2016 Jul; 203(3):1335-51. PubMed ID: 27194749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evolutionary mechanisms studied through protein fitness landscapes.
    Canale AS; Cote-Hammarlof PA; Flynn JM; Bolon DN
    Curr Opin Struct Biol; 2018 Feb; 48():141-148. PubMed ID: 29351890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution.
    Dasmeh P; Serohijos AWR
    Proteins; 2018 Dec; 86(12):1242-1250. PubMed ID: 30039542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Not Quite Lost in Translation: Mistranslation Alters Adaptive Landscape Topography and the Dynamics of Evolution.
    Schmutzer M; Wagner A
    Mol Biol Evol; 2023 Jun; 40(6):. PubMed ID: 37283551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution at 'Sutures' and 'Centers': Recombination Can Aid Adaptation of Spatially Structured Populations on Rugged Fitness Landscapes.
    Cooper JD; Kerr B
    PLoS Comput Biol; 2016 Dec; 12(12):e1005247. PubMed ID: 27973606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adaptation in protein fitness landscapes is facilitated by indirect paths.
    Wu NC; Dai L; Olson CA; Lloyd-Smith JO; Sun R
    Elife; 2016 Jul; 5():. PubMed ID: 27391790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing evolutionary pathways by fitness landscape reconstruction.
    Kogenaru M; de Vos MG; Tans SJ
    Crit Rev Biochem Mol Biol; 2009; 44(4):169-74. PubMed ID: 19552615
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complex fitness landscape shapes variation in a hyperpolymorphic species.
    Stolyarova AV; Neretina TV; Zvyagina EA; Fedotova AV; Kondrashov AS; Bazykin GA
    Elife; 2022 May; 11():. PubMed ID: 35532122
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Power law fitness landscapes and their ability to predict fitness.
    Passagem-Santos D; Zacarias S; Perfeito L
    Heredity (Edinb); 2018 Nov; 121(5):482-498. PubMed ID: 30190560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution Rapidly Optimizes Stability and Aggregation in Lattice Proteins Despite Pervasive Landscape Valleys and Mazes.
    Bertram J; Masel J
    Genetics; 2020 Apr; 214(4):1047-1057. PubMed ID: 32107278
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring protein fitness landscapes from laboratory evolution experiments.
    D'Costa S; Hinds EC; Freschlin CR; Song H; Romero PA
    PLoS Comput Biol; 2023 Mar; 19(3):e1010956. PubMed ID: 36857380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. What can we learn from fitness landscapes?
    Hartl DL
    Curr Opin Microbiol; 2014 Oct; 21():51-7. PubMed ID: 25444121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beyond the Hypercube: Evolutionary Accessibility of Fitness Landscapes with Realistic Mutational Networks.
    Zagorski M; Burda Z; Waclaw B
    PLoS Comput Biol; 2016 Dec; 12(12):e1005218. PubMed ID: 27935934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental rugged fitness landscape in protein sequence space.
    Hayashi Y; Aita T; Toyota H; Husimi Y; Urabe I; Yomo T
    PLoS One; 2006 Dec; 1(1):e96. PubMed ID: 17183728
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution in alternating environments with tunable interlandscape correlations.
    Maltas J; McNally DM; Wood KB
    Evolution; 2021 Jan; 75(1):10-24. PubMed ID: 33206376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SELVa: Simulator of evolution with landscape variation.
    Nabieva E; Bazykin GA
    PLoS One; 2020; 15(12):e0242225. PubMed ID: 33264339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Site-Specific Amino Acid Preferences Are Mostly Conserved in Two Closely Related Protein Homologs.
    Doud MB; Ashenberg O; Bloom JD
    Mol Biol Evol; 2015 Nov; 32(11):2944-60. PubMed ID: 26226986
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the evolution of sex on complex fitness landscapes.
    Misevic D; Kouyos RD; Bonhoeffer S
    PLoS Comput Biol; 2009 Sep; 5(9):e1000510. PubMed ID: 19763171
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the effect of sex on empirical fitness landscapes.
    de Visser JA; Park SC; Krug J
    Am Nat; 2009 Jul; 174 Suppl 1():S15-30. PubMed ID: 19456267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental fitness landscapes to understand the molecular evolution of RNA-based life.
    Athavale SS; Spicer B; Chen IA
    Curr Opin Chem Biol; 2014 Oct; 22():35-9. PubMed ID: 25270912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.