These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
450 related articles for article (PubMed ID: 26446169)
1. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics. Sadanandam A; Wullschleger S; Lyssiotis CA; Grötzinger C; Barbi S; Bersani S; Körner J; Wafy I; Mafficini A; Lawlor RT; Simbolo M; Asara JM; Bläker H; Cantley LC; Wiedenmann B; Scarpa A; Hanahan D Cancer Discov; 2015 Dec; 5(12):1296-313. PubMed ID: 26446169 [TBL] [Abstract][Full Text] [Related]
2. Cross-talk among MEN1, p53 and Notch regulates the proliferation of pancreatic neuroendocrine tumor cells by modulating INSM1 expression and subcellular localization. Capodanno Y; Chen Y; Schrader J; Tomosugi M; Sumi S; Yokoyama A; Hiraoka N; Ohki R Neoplasia; 2021 Sep; 23(9):979-992. PubMed ID: 34352404 [TBL] [Abstract][Full Text] [Related]
3. Suppressive effects of vascular endothelial growth factor-B on tumor growth in a mouse model of pancreatic neuroendocrine tumorigenesis. Albrecht I; Kopfstein L; Strittmatter K; Schomber T; Falkevall A; Hagberg CE; Lorentz P; Jeltsch M; Alitalo K; Eriksson U; Christofori G; Pietras K PLoS One; 2010 Nov; 5(11):e14109. PubMed ID: 21124841 [TBL] [Abstract][Full Text] [Related]
4. Compound genetically engineered mouse models of cancer reveal dual targeting of ALK1 and endoglin as a synergistic opportunity to impinge on angiogenic TGF-β signaling. Eleftheriou NM; Sjölund J; Bocci M; Cortez E; Lee SJ; Cunha SI; Pietras K Oncotarget; 2016 Dec; 7(51):84314-84325. PubMed ID: 27741515 [TBL] [Abstract][Full Text] [Related]
5. Rb and p53 Execute Distinct Roles in the Development of Pancreatic Neuroendocrine Tumors. Yamauchi Y; Kodama Y; Shiokawa M; Kakiuchi N; Marui S; Kuwada T; Sogabe Y; Tomono T; Mima A; Morita T; Matsumori T; Ueda T; Tsuda M; Nishikawa Y; Kuriyama K; Sakuma Y; Ota Y; Maruno T; Uza N; Masuda A; Tatsuoka H; Yabe D; Minamiguchi S; Masui T; Inagaki N; Uemoto S; Chiba T; Seno H Cancer Res; 2020 Sep; 80(17):3620-3630. PubMed ID: 32591410 [TBL] [Abstract][Full Text] [Related]
6. RSUME is implicated in tumorigenesis and metastasis of pancreatic neuroendocrine tumors. Wu Y; Tedesco L; Lucia K; Schlitter AM; Garcia JM; Esposito I; Auernhammer CJ; Theodoropoulou M; Arzt E; Renner U; Stalla GK Oncotarget; 2016 Sep; 7(36):57878-57893. PubMed ID: 27506944 [TBL] [Abstract][Full Text] [Related]
7. A set of microRNAs coordinately controls tumorigenesis, invasion, and metastasis. Michael IP; Saghafinia S; Hanahan D Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24184-24195. PubMed ID: 31704767 [TBL] [Abstract][Full Text] [Related]
8. Placenta-Specific 8 Is Overexpressed and Regulates Cell Proliferation in Low-Grade Human Pancreatic Neuroendocrine Tumors. Tatura M; Schmidt H; Haijat M; Stark M; Rinke A; Diels R; Lawlor RT; Scarpa A; Schrader J; Hackert T; Schimmack S; Gress TM; Buchholz M Neuroendocrinology; 2020; 110(1-2):23-34. PubMed ID: 31018208 [TBL] [Abstract][Full Text] [Related]
9. Targeting Focal Adhesion Kinase and Resistance to mTOR Inhibition in Pancreatic Neuroendocrine Tumors. François RA; Maeng K; Nawab A; Kaye FJ; Hochwald SN; Zajac-Kaye M J Natl Cancer Inst; 2015 Aug; 107(8):. PubMed ID: 25971297 [TBL] [Abstract][Full Text] [Related]
10. Differences between Well-Differentiated Neuroendocrine Tumors and Ductal Adenocarcinomas of the Pancreas Assessed by Multi-Omics Profiling. Starzyńska T; Karczmarski J; Paziewska A; Kulecka M; Kuśnierz K; Żeber-Lubecka N; Ambrożkiewicz F; Mikula M; Kos-Kudła B; Ostrowski J Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32586046 [TBL] [Abstract][Full Text] [Related]