These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26446385)

  • 1. Design and preparation of quantum dots fluorescent probes for in situ identification of Microthrix parvicella in bulking sludge.
    Fei X; Sun W; Cao L; Jiao X; Lin D; Jia G
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):961-8. PubMed ID: 26446385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and characterization of the fluorescent probes for the labeling of Microthrix parvicella.
    Li S; Fei X; Jiao X; Lin D; Zhang B; Cao L
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2883-94. PubMed ID: 26603763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel dicationic Quinoline-Carzole fluorescent probe: preparation and labelling of
    Fei X; Xing Y; Zhang B; Zhu S; Liu L
    Environ Technol; 2020 Jul; 41(18):2393-2399. PubMed ID: 30640558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Mechanism and Property of the Novel Fluorescent Probes for the Identification of Microthrix Parvicella In Situ.
    Jiao X; Fei X; Li S; Lin D; Ma H; Zhang B
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Optimization for
    Wang RF; Zhang H; Wang Q; Wang J; Gu J; Qi R; Yang M
    Huan Jing Ke Xue; 2016 Jun; 37(6):2266-2270. PubMed ID: 29964895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeling of Microthrix parvicella in situ: A novel FRET probe based on bisoctyl rhodamine B.
    Gu Y; Lin D; Fei X; Chen Y; Wang C; Yang Q; Tang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 213():263-271. PubMed ID: 30703709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Separation Method of Microthrix parvicella Filaments from Activated Sludge by a Hydrophobic Plate.
    Fei X; Li S; Cao L; Yan W; Ma H; Jia G
    Curr Microbiol; 2015 Oct; 71(4):465-70. PubMed ID: 26088951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots.
    Fei X; Yu M; Zhang B; Cao L; Yu L; Jia G; Zhou J
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():343-51. PubMed ID: 26232578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microthrix parvicella, a specialized lipid consumer in anaerobic-aerobic activated sludge plants.
    Nielsen PH; Roslev P; Dueholm TE; Nielsen JL
    Water Sci Technol; 2002; 46(1-2):73-80. PubMed ID: 12216691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants.
    Levantesi C; Rossetti S; Thelen K; Kragelund C; Krooneman J; Eikelboom D; Nielsen PH; Tandoi V
    Environ Microbiol; 2006 Sep; 8(9):1552-63. PubMed ID: 16913916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-L-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase.
    Xiao Q; Huang S; Su W; Chan WH; Liu Y
    Nanotechnology; 2012 Dec; 23(49):495717. PubMed ID: 23165590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Cysteine capped CdTe-CdS core-shell quantum dots: preparation, characterization and immuno-labeling of HeLa cells.
    Zhang H; Sun P; Liu C; Gao H; Xu L; Fang J; Wang M; Liu J; Xu S
    Luminescence; 2011; 26(2):86-92. PubMed ID: 20017130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-state-mediated charge-transfer dynamics in CdTe/CdSe core-shell quantum dots.
    Rawalekar S; Kaniyankandy S; Verma S; Ghosh HN
    Chemphyschem; 2011 Jun; 12(9):1729-35. PubMed ID: 21567706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel fluorescent long-chain fatty acid-substituted dye: labeling and biodegrading of
    Gu Y; Lin D; Fei X; Wang C; Yang Q; Tang Y; Ren X
    RSC Adv; 2018 Oct; 8(62):35855-35862. PubMed ID: 35547900
    [No Abstract]   [Full Text] [Related]  

  • 15. A novel method for aqueous synthesis of CdTe duantum dots.
    Feng L; Kuang H; Yuan X; Huang H; Yi S; Wang T; Deng K; Tang C; Zeng Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():298-302. PubMed ID: 24412782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of CdTe/CdSe quantum dots-transferrin fluorescent probes for cellular labeling.
    Guan LY; Li YQ; Lin S; Zhang MZ; Chen J; Ma ZY; Zhao YD
    Anal Chim Acta; 2012 Sep; 741():86-92. PubMed ID: 22840708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular microbial synthesis of biocompatible CdTe quantum dots.
    Bao H; Lu Z; Cui X; Qiao Y; Guo J; Anderson JM; Li CM
    Acta Biomater; 2010 Sep; 6(9):3534-41. PubMed ID: 20350621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrothermal synthesis of high-quality type-II CdTe/CdSe quantum dots with near-infrared fluorescence.
    Wang J; Han H
    J Colloid Interface Sci; 2010 Nov; 351(1):83-7. PubMed ID: 20692669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Quantitative determination of pazufloxacin using water-soluble quantum dots as fluorescent probes].
    Ling X; Deng DW; Zhong WY; Yu JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jun; 28(6):1317-21. PubMed ID: 18800713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II).
    Xia Y; Zhu C
    Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.