These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26446462)

  • 21. Effects of the mouthpiece and chamber of Turbuhaler® on the aerosolization of API-only powder formulations.
    Zhu Q; Gou D; Chan HK; Kourmatzis A; Yang R
    Int J Pharm; 2023 Apr; 637():122871. PubMed ID: 36948474
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the motion of hard-shell capsules in dry powder inhalers.
    Benque B; Khinast JG
    Int J Pharm; 2019 Aug; 567():118481. PubMed ID: 31260784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Towards quantitative prediction of the performance of dry powder inhalers by multi-scale simulations and experiments.
    Nguyen D; Remmelgas J; Björn IN; van Wachem B; Thalberg K
    Int J Pharm; 2018 Aug; 547(1-2):31-43. PubMed ID: 29792988
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional DEM-CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers.
    Yang J; Wu CY; Adams M
    Acta Pharm Sin B; 2014 Feb; 4(1):52-9. PubMed ID: 26579364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does the United States Pharmacopeia throat introduce de-agglomeration of carrier-free powder from inhalers?
    Tang P; Kwok PC; Tong Z; Yang R; Raper JA; Chan HK
    Pharm Res; 2012 Jul; 29(7):1797-807. PubMed ID: 22327971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent developments in the computational simulation of dry powder inhalers.
    Capecelatro J; Longest W; Boerman C; Sulaiman M; Sundaresan S
    Adv Drug Deliv Rev; 2022 Sep; 188():114461. PubMed ID: 35868587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flow and Particle Modelling of Dry Powder Inhalers: Methodologies, Recent Development and Emerging Applications.
    Zheng Z; Leung SSY; Gupta R
    Pharmaceutics; 2021 Feb; 13(2):. PubMed ID: 33535512
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Particle-Wall Interaction and Particle Shape on Particle Deposition Behavior in Human Respiratory System.
    Ohsaki S; Mitani R; Fujiwara S; Nakamura H; Watano S
    Chem Pharm Bull (Tokyo); 2019; 67(12):1328-1336. PubMed ID: 31787659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review of co-milling techniques for the production of high dose dry powder inhaler formulation.
    Lau M; Young PM; Traini D
    Drug Dev Ind Pharm; 2017 Aug; 43(8):1229-1238. PubMed ID: 28367654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Woolhouse R; Wynn E
    J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powder Production and Particle Engineering for Dry Powder Inhaler Formulations.
    Lin YW; Wong J; Qu L; Chan HK; Zhou QT
    Curr Pharm Des; 2015; 21(27):3902-16. PubMed ID: 26290193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Importance of powder residence time for the aerosol delivery performance of a commercial dry powder inhaler Aerolizer(®).
    Jiang L; Tang Y; Zhang H; Lu X; Chen X; Zhu J
    J Aerosol Med Pulm Drug Deliv; 2012 Oct; 25(5):265-79. PubMed ID: 22280548
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating dry powder inhalers: From in vitro studies to mobile health technologies.
    Ari A; Alhamad BR
    Respir Med; 2023; 215():107281. PubMed ID: 37244487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical simulations of particle behaviour in a realistic human airway model with varying inhalation patterns.
    Kadota K; Inoue N; Matsunaga Y; Takemiya T; Kubo K; Imano H; Uchiyama H; Tozuka Y
    J Pharm Pharmacol; 2020 Jan; 72(1):17-28. PubMed ID: 31713883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Energy Determined by Inverse Gas Chromatography as a Tool to Investigate Particulate Interactions in Dry Powder Inhalers.
    Das SC; Tucker IG; Stewart PJ
    Curr Pharm Des; 2015; 21(27):3932-44. PubMed ID: 26290201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of device design on the in vitro performance and comparability for capsule-based dry powder inhalers.
    Shur J; Lee S; Adams W; Lionberger R; Tibbatts J; Price R
    AAPS J; 2012 Dec; 14(4):667-76. PubMed ID: 22723022
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Building respirable powder architectures: utilizing polysaccharides for precise control of particle morphology for enhanced pulmonary drug delivery.
    Kadota K; Uchiyama H; Kämäräinen T; Tanaka S; Tozuka Y
    Expert Opin Drug Deliv; 2024 Jun; 21(6):945-963. PubMed ID: 38961522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dry powder inhalation: past, present and future.
    de Boer AH; Hagedoorn P; Hoppentocht M; Buttini F; Grasmeijer F; Frijlink HW
    Expert Opin Drug Deliv; 2017 Apr; 14(4):499-512. PubMed ID: 27534768
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [A novel pulmonary delivery system--dry powder inhalers].
    Tang Y; Zhu JB; Chen XJ
    Yao Xue Xue Bao; 2009 Jun; 44(6):571-4. PubMed ID: 19806884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.