These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26446476)

  • 1. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion.
    Nowotny J; Alim MA; Bak T; Idris MA; Ionescu M; Prince K; Sahdan MZ; Sopian K; Mat Teridi MA; Sigmund W
    Chem Soc Rev; 2015 Dec; 44(23):8424-42. PubMed ID: 26446476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic Properties of TiO2: Evidence of the Key Role of Surface Active Sites in Water Oxidation.
    Bak T; Li W; Nowotny J; Atanacio AJ; Davis J
    J Phys Chem A; 2015 Sep; 119(36):9465-73. PubMed ID: 26294286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphoteric oxide semiconductors for energy conversion devices: a tutorial review.
    Singh K; Nowotny J; Thangadurai V
    Chem Soc Rev; 2013 Mar; 42(5):1961-72. PubMed ID: 23257778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts.
    Horiuchi Y; Toyao T; Takeuchi M; Matsuoka M; Anpo M
    Phys Chem Chem Phys; 2013 Aug; 15(32):13243-53. PubMed ID: 23760469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical Properties and Defect Chemistry of In-Doped TiO2 in Terms of the Jonker Formalism.
    Nowotny J; Bak T; Ionescu M; Alim MA
    J Phys Chem A; 2015 Apr; 119(17):4032-40. PubMed ID: 25830953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carrier Step-by-Step Transport Initiated by Precise Defect Distribution Engineering for Efficient Photocatalytic Hydrogen Generation.
    Chen J; Wu G; Wang T; Li X; Li M; Sang Y; Liu H
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4634-4642. PubMed ID: 28084070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells.
    Wang Y; Tang J; Zhou T; Da P; Li J; Kong B; Yang Z; Zheng G
    Small; 2014 Dec; 10(23):4967-74. PubMed ID: 25044916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disorder engineering of undoped TiO2 nanotube arrays for highly efficient solar-driven oxygen evolution.
    Salari M; Aboutalebi SH; Aghassi A; Wagner P; Mozer AJ; Wallace GG
    Phys Chem Chem Phys; 2015 Feb; 17(8):5642-9. PubMed ID: 25623280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting.
    Hernández S; Hidalgo D; Sacco A; Chiodoni A; Lamberti A; Cauda V; Tresso E; Saracco G
    Phys Chem Chem Phys; 2015 Mar; 17(12):7775-86. PubMed ID: 25715190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge Transport in Two-Photon Semiconducting Structures for Solar Fuels.
    Liu G; Du K; Haussener S; Wang K
    ChemSusChem; 2016 Oct; 9(20):2878-2904. PubMed ID: 27624337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications.
    Pan X; Yang MQ; Fu X; Zhang N; Xu YJ
    Nanoscale; 2013 May; 5(9):3601-14. PubMed ID: 23532413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of indium segregation on the surface versus bulk chemistry for indium-doped TiO2.
    Atanacio AJ; Bak T; Nowotny J
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6626-34. PubMed ID: 23145539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-defect semiconductor photocatalysts for solar-to-chemical conversion: advances and challenges.
    Li T; Li Y; Guo C; Hu Y
    Chem Commun (Camb); 2024 Feb; 60(17):2320-2348. PubMed ID: 38314591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic and electronic energy diagrams for hybrid perovskite solar cells.
    Moia D; Maier J
    Mater Horiz; 2023 May; 10(5):1641-1650. PubMed ID: 36802280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of cocatalysts in photocatalysis and photoelectrocatalysis.
    Yang J; Wang D; Han H; Li C
    Acc Chem Res; 2013 Aug; 46(8):1900-9. PubMed ID: 23530781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Doping of TiO2 for sensitized solar cells.
    Roose B; Pathak S; Steiner U
    Chem Soc Rev; 2015 Nov; 44(22):8326-49. PubMed ID: 26314371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tantalum-based semiconductors for solar water splitting.
    Zhang P; Zhang J; Gong J
    Chem Soc Rev; 2014 Jul; 43(13):4395-422. PubMed ID: 24668282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.