These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 26446511)
1. Making it stick: the role of structural design in implantable technologies. Lee W; Leask RL; Moraes C Integr Biol (Camb); 2015 Nov; 7(11):1335-8. PubMed ID: 26446511 [TBL] [Abstract][Full Text] [Related]
2. Engineering interconnected 3D vascular networks in hydrogels using molded sodium alginate lattice as the sacrificial template. Wang XY; Jin ZH; Gan BW; Lv SW; Xie M; Huang WH Lab Chip; 2014 Aug; 14(15):2709-16. PubMed ID: 24887141 [TBL] [Abstract][Full Text] [Related]
4. Shear-reversibly crosslinked alginate hydrogels for tissue engineering. Park H; Kang SW; Kim BS; Mooney DJ; Lee KY Macromol Biosci; 2009 Sep; 9(9):895-901. PubMed ID: 19422012 [TBL] [Abstract][Full Text] [Related]
5. Development of a morphogenetically active scaffold for three-dimensional growth of bone cells: biosilica-alginate hydrogel for SaOS-2 cell cultivation. Müller WE; Schröder HC; Feng Q; Schlossmacher U; Link T; Wang X J Tissue Eng Regen Med; 2015 Nov; 9(11):E39-50. PubMed ID: 23585362 [TBL] [Abstract][Full Text] [Related]
6. Application of 3D Printing in Implantable Medical Devices. Wang Z; Yang Y Biomed Res Int; 2021; 2021():6653967. PubMed ID: 33521128 [TBL] [Abstract][Full Text] [Related]
8. Conducting polymer scaffolds: a new frontier in bioelectronics and bioengineering. Nasser RA; Arya SS; Alshehhi KH; Teo JCM; Pitsalidis C Trends Biotechnol; 2024 Jun; 42(6):760-779. PubMed ID: 38184439 [TBL] [Abstract][Full Text] [Related]
9. Preparation and characterization of alginate microspheres for sustained protein delivery within tissue scaffolds. Zhai P; Chen XB; Schreyer DJ Biofabrication; 2013 Mar; 5(1):015009. PubMed ID: 23302146 [TBL] [Abstract][Full Text] [Related]
10. Hierarchical mesoporous bioactive glass/alginate composite scaffolds fabricated by three-dimensional plotting for bone tissue engineering. Luo Y; Wu C; Lode A; Gelinsky M Biofabrication; 2013 Mar; 5(1):015005. PubMed ID: 23228963 [TBL] [Abstract][Full Text] [Related]
11. [Research Progress of Four-dimensional Hydrogels in Implantable Medical Devices]. Liu R; Wang L; Liu H; Li H; Qin Q; Xing D Zhongguo Yi Liao Qi Xie Za Zhi; 2021 Sep; 45(5):524-529. PubMed ID: 34628765 [TBL] [Abstract][Full Text] [Related]
12. Biodegradable polymers for electrospinning: towards biomedical applications. Kai D; Liow SS; Loh XJ Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():659-70. PubMed ID: 25491875 [TBL] [Abstract][Full Text] [Related]
14. Nano-/microfiber scaffold for tissue engineering: physical and biological properties. Santana BP; Paganotto GF; Nedel F; Piva E; de Carvalho RV; Nör JE; Demarco FF; Carreño NL J Biomed Mater Res A; 2012 Nov; 100(11):3051-8. PubMed ID: 22711621 [TBL] [Abstract][Full Text] [Related]
15. Antifibrotic strategies for medical devices. Welch NG; Winkler DA; Thissen H Adv Drug Deliv Rev; 2020 Dec; 167():109-120. PubMed ID: 32553685 [TBL] [Abstract][Full Text] [Related]
16. Alginate/nanohydroxyapatite scaffolds with designed core/shell structures fabricated by 3D plotting and in situ mineralization for bone tissue engineering. Luo Y; Lode A; Wu C; Chang J; Gelinsky M ACS Appl Mater Interfaces; 2015 Apr; 7(12):6541-9. PubMed ID: 25761464 [TBL] [Abstract][Full Text] [Related]
17. On the nature of biomaterials. Williams DF Biomaterials; 2009 Oct; 30(30):5897-909. PubMed ID: 19651435 [TBL] [Abstract][Full Text] [Related]
18. Mimicking biological functionality with polymers for biomedical applications. Green JJ; Elisseeff JH Nature; 2016 Dec; 540(7633):386-394. PubMed ID: 27974772 [TBL] [Abstract][Full Text] [Related]
19. [Progress of alginate-based biomedical materials]. Wei X; Xi T; Gu Q; Zheng Y Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Aug; 27(8):1015-20. PubMed ID: 24171362 [TBL] [Abstract][Full Text] [Related]