These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 26446710)

  • 1. Synthesis of an arrayed sgRNA library targeting the human genome.
    Schmidt T; Schmid-Burgk JL; Hornung V
    Sci Rep; 2015 Oct; 5():14987. PubMed ID: 26446710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
    Prykhozhij SV; Rajan V; Gaston D; Berman JN
    PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.
    Liu DY; Qiu T; Ding XH; Li M; Zhu MY; Wang JH
    Yi Chuan; 2016 Aug; 38(8):756-64. PubMed ID: 27531614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Split-and-Click" sgRNA.
    Taemaitree L; Shivalingam A; El-Sagheer AH; Brown T
    Methods Mol Biol; 2021; 2162():61-78. PubMed ID: 32926378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs.
    Port F; Bullock SL
    Nat Methods; 2016 Oct; 13(10):852-4. PubMed ID: 27595403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells.
    Zhang H; Zhang X; Fan C; Xie Q; Xu C; Zhao Q; Liu Y; Wu X; Zhang H
    Biochem Biophys Res Commun; 2016 Mar; 471(4):528-32. PubMed ID: 26879140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs.
    Wang X; Zhou J; Cao C; Huang J; Hai T; Wang Y; Zheng Q; Zhang H; Qin G; Miao X; Wang H; Cao S; Zhou Q; Zhao J
    Sci Rep; 2015 Aug; 5():13348. PubMed ID: 26293209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency.
    Zhang JP; Li XL; Neises A; Chen W; Hu LP; Ji GZ; Yu JY; Xu J; Yuan WP; Cheng T; Zhang XB
    Sci Rep; 2016 Jun; 6():28566. PubMed ID: 27338021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GUIDES: sgRNA design for loss-of-function screens.
    Meier JA; Zhang F; Sanjana NE
    Nat Methods; 2017 Aug; 14(9):831-832. PubMed ID: 28858339
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA.
    Wu D; Guan X; Zhu Y; Ren K; Huang Z
    Cell Res; 2017 May; 27(5):705-708. PubMed ID: 28374750
    [No Abstract]   [Full Text] [Related]  

  • 16. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.
    Billon P; Bryant EE; Joseph SA; Nambiar TS; Hayward SB; Rothstein R; Ciccia A
    Mol Cell; 2017 Sep; 67(6):1068-1079.e4. PubMed ID: 28890334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the Biologist's Toolkit with CRISPR-Cas9.
    Sternberg SH; Doudna JA
    Mol Cell; 2015 May; 58(4):568-74. PubMed ID: 26000842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
    Liu L; Chen P; Wang M; Li X; Wang J; Yin M; Wang Y
    Mol Cell; 2017 Jan; 65(2):310-322. PubMed ID: 27989439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeric DNA-RNA Guide RNA Designs.
    Lu S; Zhang Y; Yin H
    Methods Mol Biol; 2021; 2162():79-85. PubMed ID: 32926379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.