BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 26446710)

  • 1. Synthesis of an arrayed sgRNA library targeting the human genome.
    Schmidt T; Schmid-Burgk JL; Hornung V
    Sci Rep; 2015 Oct; 5():14987. PubMed ID: 26446710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New vectors for simple and streamlined CRISPR-Cas9 genome editing in Saccharomyces cerevisiae.
    Laughery MF; Hunter T; Brown A; Hoopes J; Ostbye T; Shumaker T; Wyrick JJ
    Yeast; 2015 Dec; 32(12):711-20. PubMed ID: 26305040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences.
    Prykhozhij SV; Rajan V; Gaston D; Berman JN
    PLoS One; 2015; 10(3):e0119372. PubMed ID: 25742428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of single guide RNA transcription for efficient CRISPR/Cas-based genomic engineering.
    Ui-Tei K; Maruyama S; Nakano Y
    Genome; 2017 Jun; 60(6):537-545. PubMed ID: 28177825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9-mediated 2-sgRNA cleavage facilitates pseudorabies virus editing.
    Tang YD; Guo JC; Wang TY; Zhao K; Liu JT; Gao JC; Tian ZJ; An TQ; Cai XH
    FASEB J; 2018 Aug; 32(8):4293-4301. PubMed ID: 29509513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid construction of multiple sgRNA vectors and knockout of the Arabidopsis IAA2 gene using the CRISPR/Cas9 genomic editing technology.
    Liu DY; Qiu T; Ding XH; Li M; Zhu MY; Wang JH
    Yi Chuan; 2016 Aug; 38(8):756-64. PubMed ID: 27531614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Split-and-Click" sgRNA.
    Taemaitree L; Shivalingam A; El-Sagheer AH; Brown T
    Methods Mol Biol; 2021; 2162():61-78. PubMed ID: 32926378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs.
    Port F; Bullock SL
    Nat Methods; 2016 Oct; 13(10):852-4. PubMed ID: 27595403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel sgRNA selection system for CRISPR-Cas9 in mammalian cells.
    Zhang H; Zhang X; Fan C; Xie Q; Xu C; Zhao Q; Liu Y; Wu X; Zhang H
    Biochem Biophys Res Commun; 2016 Mar; 471(4):528-32. PubMed ID: 26879140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient CRISPR/Cas9-mediated biallelic gene disruption and site-specific knockin after rapid selection of highly active sgRNAs in pigs.
    Wang X; Zhou J; Cao C; Huang J; Hai T; Wang Y; Zheng Q; Zhang H; Qin G; Miao X; Wang H; Cao S; Zhou Q; Zhao J
    Sci Rep; 2015 Aug; 5():13348. PubMed ID: 26293209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different Effects of sgRNA Length on CRISPR-mediated Gene Knockout Efficiency.
    Zhang JP; Li XL; Neises A; Chen W; Hu LP; Ji GZ; Yu JY; Xu J; Yuan WP; Cheng T; Zhang XB
    Sci Rep; 2016 Jun; 6():28566. PubMed ID: 27338021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GUIDES: sgRNA design for loss-of-function screens.
    Meier JA; Zhang F; Sanjana NE
    Nat Methods; 2017 Aug; 14(9):831-832. PubMed ID: 28858339
    [No Abstract]   [Full Text] [Related]  

  • 15. Structural basis of stringent PAM recognition by CRISPR-C2c1 in complex with sgRNA.
    Wu D; Guan X; Zhu Y; Ren K; Huang Z
    Cell Res; 2017 May; 27(5):705-708. PubMed ID: 28374750
    [No Abstract]   [Full Text] [Related]  

  • 16. Targeted genome editing in human cells using CRISPR/Cas nucleases and truncated guide RNAs.
    Fu Y; Reyon D; Joung JK
    Methods Enzymol; 2014; 546():21-45. PubMed ID: 25398334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.
    Billon P; Bryant EE; Joseph SA; Nambiar TS; Hayward SB; Rothstein R; Ciccia A
    Mol Cell; 2017 Sep; 67(6):1068-1079.e4. PubMed ID: 28890334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expanding the Biologist's Toolkit with CRISPR-Cas9.
    Sternberg SH; Doudna JA
    Mol Cell; 2015 May; 58(4):568-74. PubMed ID: 26000842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
    Liu L; Chen P; Wang M; Li X; Wang J; Yin M; Wang Y
    Mol Cell; 2017 Jan; 65(2):310-322. PubMed ID: 27989439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chimeric DNA-RNA Guide RNA Designs.
    Lu S; Zhang Y; Yin H
    Methods Mol Biol; 2021; 2162():79-85. PubMed ID: 32926379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.