These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 26446712)

  • 41. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Total cost estimation for implementing genome-enabled selection in a multi-level swine production system.
    Abell CE; Dekkers JC; Rothschild MF; Mabry JW; Stalder KJ
    Genet Sel Evol; 2014 May; 46(1):32. PubMed ID: 24885089
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design of a low-density SNP chip for the main Australian sheep breeds and its effect on imputation and genomic prediction accuracy.
    Bolormaa S; Gore K; van der Werf JH; Hayes BJ; Daetwyler HD
    Anim Genet; 2015 Oct; 46(5):544-56. PubMed ID: 26360638
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Using a very low-density SNP panel for genomic selection in a breeding program for sheep.
    Raoul J; Swan AA; Elsen JM
    Genet Sel Evol; 2017 Oct; 49(1):76. PubMed ID: 29065868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficiency of genomic selection in a purebred pig male line.
    Tribout T; Larzul C; Phocas F
    J Anim Sci; 2012 Dec; 90(12):4164-76. PubMed ID: 22859761
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The impact of selective genotyping on the response to selection using single-step genomic best linear unbiased prediction.
    Howard JT; Rathje TA; Bruns CE; Wilson-Wells DF; Kachman SD; Spangler ML
    J Anim Sci; 2018 Nov; 96(11):4532-4542. PubMed ID: 30107560
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimal mating strategies to manage a heterozygous advantage major gene in sheep.
    Raoul J; Palhière I; Astruc JM; Swan A; Elsen JM
    Animal; 2018 Mar; 12(3):454-463. PubMed ID: 28770690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Increased genetic gains in sheep, beef and dairy breeding programs from using female reproductive technologies combined with optimal contribution selection and genomic breeding values.
    Granleese T; Clark SA; Swan AA; van der Werf JH
    Genet Sel Evol; 2015 Sep; 47(1):70. PubMed ID: 26370143
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing female allocation to reproductive technologies considering merit, inbreeding and cost in nucleus breeding programmes with genomic selection.
    Granleese T; Clark SA; Kinghorn BP; van der Werf JHJ
    J Anim Breed Genet; 2019 Mar; 136(2):79-90. PubMed ID: 30585664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genomic selection for two traits in a maternal pig breeding scheme.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2013 Jul; 91(7):3079-87. PubMed ID: 23658351
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficiency of multi-breed genomic selection for dairy cattle breeds with different sizes of reference population.
    Hozé C; Fritz S; Phocas F; Boichard D; Ducrocq V; Croiseau P
    J Dairy Sci; 2014; 97(6):3918-29. PubMed ID: 24704232
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genetic and economic effects of the increase in female paternal filiations by parentage assignment in sheep and goat breeding programs.
    Raoul J; Palhière I; Astruc JM; Elsen JM
    J Anim Sci; 2016 Sep; 94(9):3663-3683. PubMed ID: 27898915
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of a breeding scheme combined by genomic pre-selection and progeny testing on annual genetic gain in a dairy cattle population.
    Yamazaki T; Togashi K; Iwama S; Matsumoto S; Moribe K; Nakanishi T; Hagiya K; Hayasaka K
    Anim Sci J; 2014 Jun; 85(6):639-49. PubMed ID: 24612342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Benefits of including methane measurements in selection strategies.
    Robinson DL; Oddy VH
    J Anim Sci; 2016 Sep; 94(9):3624-3635. PubMed ID: 27898913
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Which Individuals To Choose To Update the Reference Population? Minimizing the Loss of Genetic Diversity in Animal Genomic Selection Programs.
    Eynard SE; Croiseau P; Laloë D; Fritz S; Calus MPL; Restoux G
    G3 (Bethesda); 2018 Jan; 8(1):113-121. PubMed ID: 29133511
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interplay between heritability, genetic correlation and economic weighting in a selection index with and without genomic information.
    Haberland AM; Pimentel EC; Ytournel F; Erbe M; Simianer H
    J Anim Breed Genet; 2013 Dec; 130(6):456-67. PubMed ID: 24236608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Breeding objectives for sheep should be customised depending on variation in pasture growth across years.
    Rose G; Mulder HA; Thompson AN; van der Werf JH; van Arendonk JA
    Animal; 2015 Aug; 9(8):1268-77. PubMed ID: 25857317
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of enlarging the reference population with (un)genotyped animals on the accuracy of genomic selection in dairy cattle.
    Pszczola M; Mulder HA; Calus MP
    J Dairy Sci; 2011 Jan; 94(1):431-41. PubMed ID: 21183054
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparison of genetic parameters and estimated breeding values for worm resistance in meat sheep obtained using traditional and genomic models.
    Dos Santos GV; Santos NPDS; Figueiredo Filho LAS; Britto FB; Sena LS; Torres TS; Carneiro PLS; Sarmento JLR
    Trop Anim Health Prod; 2021 Apr; 53(2):283. PubMed ID: 33890183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.