These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 26446807)
1. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic. Torres-Barceló C; Kojadinovic M; Moxon R; MacLean RC Proc Biol Sci; 2015 Oct; 282(1816):20150885. PubMed ID: 26446807 [TBL] [Abstract][Full Text] [Related]
2. PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa. Blázquez J; Gómez-Gómez JM; Oliver A; Juan C; Kapur V; Martín S Mol Microbiol; 2006 Oct; 62(1):84-99. PubMed ID: 16956383 [TBL] [Abstract][Full Text] [Related]
3. Metronidazole increases the emergence of ciprofloxacin- and amikacin-resistant Pseudomonas aeruginosa by inducing the SOS response. Hocquet D; Bertrand X J Antimicrob Chemother; 2014 Mar; 69(3):852-4. PubMed ID: 24159155 [No Abstract] [Full Text] [Related]
4. Ciprofloxacin-Mediated Mutagenesis Is Suppressed by Subinhibitory Concentrations of Amikacin in Pseudomonas aeruginosa. Valencia EY; Esposito F; Spira B; Blázquez J; Galhardo RS Antimicrob Agents Chemother; 2017 Mar; 61(3):. PubMed ID: 28031197 [TBL] [Abstract][Full Text] [Related]
5. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. Cirz RT; O'Neill BM; Hammond JA; Head SR; Romesberg FE J Bacteriol; 2006 Oct; 188(20):7101-10. PubMed ID: 17015649 [TBL] [Abstract][Full Text] [Related]
6. N-acetylcysteine blocks SOS induction and mutagenesis produced by fluoroquinolones in Escherichia coli. Rodríguez-Rosado AI; Valencia EY; Rodríguez-Rojas A; Costas C; Galhardo RS; Rodríguez-Beltrán J; Blázquez J J Antimicrob Chemother; 2019 Aug; 74(8):2188-2196. PubMed ID: 31102529 [TBL] [Abstract][Full Text] [Related]
7. Biological cost of pyocin production during the SOS response in Pseudomonas aeruginosa. Penterman J; Singh PK; Walker GC J Bacteriol; 2014 Sep; 196(18):3351-9. PubMed ID: 25022851 [TBL] [Abstract][Full Text] [Related]
8. Vesiculation from Pseudomonas aeruginosa under SOS. Maredia R; Devineni N; Lentz P; Dallo SF; Yu J; Guentzel N; Chambers J; Arulanandam B; Haskins WE; Weitao T ScientificWorldJournal; 2012; 2012():402919. PubMed ID: 22448133 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of SOS genes in ciprofloxacin resistant Escherichia coli mutants. Pourahmad Jaktaji R; Pasand S Gene; 2016 Jan; 576(1 Pt 1):115-8. PubMed ID: 26432001 [TBL] [Abstract][Full Text] [Related]
10. Complete and SOS-mediated response of Staphylococcus aureus to the antibiotic ciprofloxacin. Cirz RT; Jones MB; Gingles NA; Minogue TD; Jarrahi B; Peterson SN; Romesberg FE J Bacteriol; 2007 Jan; 189(2):531-9. PubMed ID: 17085555 [TBL] [Abstract][Full Text] [Related]
11. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Stewart PS; Franklin MJ; Williamson KS; Folsom JP; Boegli L; James GA Antimicrob Agents Chemother; 2015 Jul; 59(7):3838-47. PubMed ID: 25870065 [TBL] [Abstract][Full Text] [Related]
12. Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa. Jørgensen KM; Wassermann T; Jensen PØ; Hengzuang W; Molin S; Høiby N; Ciofu O Antimicrob Agents Chemother; 2013 Sep; 57(9):4215-21. PubMed ID: 23774442 [TBL] [Abstract][Full Text] [Related]
13. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. Ahmed MN; Abdelsamad A; Wassermann T; Porse A; Becker J; Sommer MOA; Høiby N; Ciofu O NPJ Biofilms Microbiomes; 2020 Jul; 6(1):28. PubMed ID: 32709907 [TBL] [Abstract][Full Text] [Related]
14. Involvement of the lon protease in the SOS response triggered by ciprofloxacin in Pseudomonas aeruginosa PAO1. Breidenstein EB; Bains M; Hancock RE Antimicrob Agents Chemother; 2012 Jun; 56(6):2879-87. PubMed ID: 22450976 [TBL] [Abstract][Full Text] [Related]
15. Suppression of the SOS response modifies spatiotemporal evolution, post-antibiotic effect, bacterial fitness and biofilm formation in quinolone-resistant Escherichia coli. Recacha E; Machuca J; Díaz-Díaz S; García-Duque A; Ramos-Guelfo M; Docobo-Pérez F; Blázquez J; Pascual A; Rodríguez-Martínez JM J Antimicrob Chemother; 2019 Jan; 74(1):66-73. PubMed ID: 30329046 [TBL] [Abstract][Full Text] [Related]
17. Gamblers: An Antibiotic-Induced Evolvable Cell Subpopulation Differentiated by Reactive-Oxygen-Induced General Stress Response. Pribis JP; García-Villada L; Zhai Y; Lewin-Epstein O; Wang AZ; Liu J; Xia J; Mei Q; Fitzgerald DM; Bos J; Austin RH; Herman C; Bates D; Hadany L; Hastings PJ; Rosenberg SM Mol Cell; 2019 May; 74(4):785-800.e7. PubMed ID: 30948267 [TBL] [Abstract][Full Text] [Related]
18. Fis Contributes to Resistance of Pseudomonas aeruginosa to Ciprofloxacin by Regulating Pyocin Synthesis. Long Y; Fu W; Wang S; Deng X; Jin Y; Bai F; Cheng Z; Wu W J Bacteriol; 2020 May; 202(11):. PubMed ID: 32205461 [TBL] [Abstract][Full Text] [Related]
19. Perturbation of iron homeostasis promotes the evolution of antibiotic resistance. Méhi O; Bogos B; Csörgő B; Pál F; Nyerges A; Papp B; Pál C Mol Biol Evol; 2014 Oct; 31(10):2793-804. PubMed ID: 25063442 [TBL] [Abstract][Full Text] [Related]
20. Evolution of Pseudomonas aeruginosa Antimicrobial Resistance and Fitness under Low and High Mutation Rates. Cabot G; Zamorano L; Moyà B; Juan C; Navas A; Blázquez J; Oliver A Antimicrob Agents Chemother; 2016 Jan; 60(3):1767-78. PubMed ID: 26729493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]