BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26447554)

  • 1. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering.
    Camarero-Espinosa S; Rothen-Rutishauser B; Weder C; Foster EJ
    Biomaterials; 2016 Jan; 74():42-52. PubMed ID: 26447554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Articular cartilage: from formation to tissue engineering.
    Camarero-Espinosa S; Rothen-Rutishauser B; Foster EJ; Weder C
    Biomater Sci; 2016 May; 4(5):734-67. PubMed ID: 26923076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes.
    Wang Y; Blasioli DJ; Kim HJ; Kim HS; Kaplan DL
    Biomaterials; 2006 Sep; 27(25):4434-42. PubMed ID: 16677707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous regeneration of articular cartilage and subchondral bone in vivo using MSCs induced by a spatially controlled gene delivery system in bilayered integrated scaffolds.
    Chen J; Chen H; Li P; Diao H; Zhu S; Dong L; Wang R; Guo T; Zhao J; Zhang J
    Biomaterials; 2011 Jul; 32(21):4793-805. PubMed ID: 21489619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of nanocomposite scaffolds based on triblock copolymer of L-lactide, ε-caprolactone and nano-hydroxyapatite for bone tissue engineering.
    Torabinejad B; Mohammadi-Rovshandeh J; Davachi SM; Zamanian A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():199-210. PubMed ID: 25063111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bilayered scaffolds for osteochondral tissue engineering.
    O'Shea TM; Miao X
    Tissue Eng Part B Rev; 2008 Dec; 14(4):447-64. PubMed ID: 18844605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articulation inspired by nature: a review of biomimetic and biologically active 3D printed scaffolds for cartilage tissue engineering.
    O'Shea DG; Curtin CM; O'Brien FJ
    Biomater Sci; 2022 May; 10(10):2462-2483. PubMed ID: 35355029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D braid scaffolds for regeneration of articular cartilage.
    Ahn H; Kim KJ; Park SY; Huh JE; Kim HJ; Yu WR
    J Mech Behav Biomed Mater; 2014 Jun; 34():37-46. PubMed ID: 24556323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits.
    Martinez-Diaz S; Garcia-Giralt N; Lebourg M; Gómez-Tejedor JA; Vila G; Caceres E; Benito P; Pradas MM; Nogues X; Ribelles JL; Monllau JC
    Am J Sports Med; 2010 Mar; 38(3):509-19. PubMed ID: 20093424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of a tissue-engineered bilayer scaffold for osteochondral tissue repair.
    Giannoni P; Lazzarini E; Ceseracciu L; Barone AC; Quarto R; Scaglione S
    J Tissue Eng Regen Med; 2015 Oct; 9(10):1182-92. PubMed ID: 23172816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering.
    Bölgen N; Yang Y; Korkusuz P; Güzel E; El Haj AJ; Pişkin E
    J Tissue Eng Regen Med; 2011 Nov; 5(10):770-9. PubMed ID: 22002920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering].
    Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral tissue engineering: current strategies and challenges.
    Nukavarapu SP; Dorcemus DL
    Biotechnol Adv; 2013; 31(5):706-21. PubMed ID: 23174560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of various treatment strategies, especially tissue engineering for damaged articular cartilage.
    Rahmani Del Bakhshayesh A; Babaie S; Tayefi Nasrabadi H; Asadi N; Akbarzadeh A; Abedelahi A
    Artif Cells Nanomed Biotechnol; 2020 Dec; 48(1):1089-1104. PubMed ID: 32856970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation.
    Jonnalagadda JB; Rivero IV; Dertien JS
    J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.
    Moroni L; Hendriks JA; Schotel R; de Wijn JR; van Blitterswijk CA
    Tissue Eng; 2007 Feb; 13(2):361-71. PubMed ID: 17504063
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.