These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 26447558)

  • 1. Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris.
    Figueira CE; Moreira PF; Giudici R
    Bioresour Technol; 2015 Dec; 198():717-24. PubMed ID: 26447558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gasification kinetics of raw and wet-torrefied microalgae Chlorella vulgaris ESP-31 in carbon dioxide.
    Bach QV; Chen WH; Sheen HK; Chang JS
    Bioresour Technol; 2017 Nov; 244(Pt 2):1393-1399. PubMed ID: 28390786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.
    Chen C; Lu Z; Ma X; Long J; Peng Y; Hu L; Lu Q
    Bioresour Technol; 2013 Sep; 144():563-71. PubMed ID: 23890976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis, combustion and gasification characteristics of Nannochloropsis gaditana microalgae.
    Sanchez-Silva L; López-González D; Garcia-Minguillan AM; Valverde JL
    Bioresour Technol; 2013 Feb; 130():321-31. PubMed ID: 23313676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apparent kinetics of high temperature oxidative decomposition of microalgal biomass.
    Ali SA; Razzak SA; Hossain MM
    Bioresour Technol; 2015 Jan; 175():569-77. PubMed ID: 25459869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis of microalgal biomass in carbon dioxide environment.
    Cho SH; Kim KH; Jeon YJ; Kwon EE
    Bioresour Technol; 2015 Oct; 193():185-91. PubMed ID: 26133476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae.
    Gai C; Zhang Y; Chen WT; Zhang P; Dong Y
    Bioresour Technol; 2013 Dec; 150():139-48. PubMed ID: 24161552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic model for supercritical water gasification of algae.
    Guan Q; Wei C; Savage PE
    Phys Chem Chem Phys; 2012 Mar; 14(9):3140-7. PubMed ID: 22286322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis.
    Agrawal A; Chakraborty S
    Bioresour Technol; 2013 Jan; 128():72-80. PubMed ID: 23196224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological-phased kinetic characteristics of microalgae Chlorella vulgaris growth and lipid synthesis considering synergistic effects of light, carbon and nutrients.
    Liao Q; Chang HX; Fu Q; Huang Y; Xia A; Zhu X; Zhong N
    Bioresour Technol; 2018 Feb; 250():583-590. PubMed ID: 29207290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-Hydrothermal gasification of Chlorella vulgaris and hydrochar: The effects of waste-to-solid biofuel production and blending concentration on biogas generation.
    Sztancs G; Juhasz L; Nagy BJ; Nemeth A; Selim A; Andre A; Toth AJ; Mizsey P; Fozer D
    Bioresour Technol; 2020 Apr; 302():122793. PubMed ID: 32007846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge-tunable polymers as reversible and recyclable flocculants for the dewatering of microalgae.
    Morrissey KL; He C; Wong MH; Zhao X; Chapman RZ; Bender SL; Prevatt WD; Stoykovich MP
    Biotechnol Bioeng; 2015 Jan; 112(1):74-83. PubMed ID: 25060233
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.
    Almeida HN; Calixto GQ; Chagas BME; Melo DMA; Resende FM; Melo MAF; Braga RM
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14142-14150. PubMed ID: 28417328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient and scalable extraction and quantification method for algal derived biofuel.
    Lohman EJ; Gardner RD; Halverson L; Macur RE; Peyton BM; Gerlach R
    J Microbiol Methods; 2013 Sep; 94(3):235-44. PubMed ID: 23810969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA.
    Azizi K; Keshavarz Moraveji M; Abedini Najafabadi H
    Bioresour Technol; 2017 Nov; 243():481-491. PubMed ID: 28689141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of calcium, magnesium and sodium chloride in enhancing lipid accumulation in two green microalgae.
    Gorain PC; Bagchi SK; Mallick N
    Environ Technol; 2013; 34(13-16):1887-94. PubMed ID: 24350442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the flocculating agent from the spontaneously flocculating microalga Chlorella vulgaris JSC-7.
    Alam MA; Wan C; Guo SL; Zhao XQ; Huang ZY; Yang YL; Chang JS; Bai FW
    J Biosci Bioeng; 2014 Jul; 118(1):29-33. PubMed ID: 24507901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of anionic surfactant on extraction of free fatty acid from Chlorella vulgaris.
    Park JY; Nam B; Choi SA; Oh YK; Lee JS
    Bioresour Technol; 2014 Aug; 166():620-4. PubMed ID: 24929300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnesium Uptake by the Green Microalga Chlorella vulgaris in Batch Cultures.
    Ben Amor-Ben Ayed H; Taidi B; Ayadi H; Pareau D; Stambouli M
    J Microbiol Biotechnol; 2016 Mar; 26(3):503-10. PubMed ID: 26628253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.
    Gao Y; Tahmasebi A; Dou J; Yu J
    Bioresour Technol; 2016 May; 207():276-84. PubMed ID: 26894568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.