BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 26447573)

  • 1. The Cognitive Architecture of Spatial Navigation: Hippocampal and Striatal Contributions.
    Chersi F; Burgess N
    Neuron; 2015 Oct; 88(1):64-77. PubMed ID: 26447573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial coordinate transforms linking the allocentric hippocampal and egocentric parietal primate brain systems for memory, action in space, and navigation.
    Rolls ET
    Hippocampus; 2020 Apr; 30(4):332-353. PubMed ID: 31697002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human aging alters the neural computation and representation of space.
    Schuck NW; Doeller CF; Polk TA; Lindenberger U; Li SC
    Neuroimage; 2015 Aug; 117():141-50. PubMed ID: 26003855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial cognition and the brain.
    Burgess N
    Ann N Y Acad Sci; 2008 Mar; 1124():77-97. PubMed ID: 18400925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Goal-oriented robot navigation learning using a multi-scale space representation.
    Llofriu M; Tejera G; Contreras M; Pelc T; Fellous JM; Weitzenfeld A
    Neural Netw; 2015 Dec; 72():62-74. PubMed ID: 26548944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task.
    Rice JP; Wallace DG; Hamilton DA
    Behav Brain Res; 2015 Aug; 289():105-17. PubMed ID: 25907746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel processing across neural systems: implications for a multiple memory system hypothesis.
    Mizumori SJ; Yeshenko O; Gill KM; Davis DM
    Neurobiol Learn Mem; 2004 Nov; 82(3):278-98. PubMed ID: 15464410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Medial Prefrontal Cortex Represents the Object-Based Cognitive Map When Remembering an Egocentric Target Location.
    Zhang B; Naya Y
    Cereb Cortex; 2020 Sep; 30(10):5356-5371. PubMed ID: 32483594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do questionnaires reflect their purported cognitive functions?
    Clark IA; Maguire EA
    Cognition; 2020 Feb; 195():104114. PubMed ID: 31869709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive Representations in Hippocampal and Prefrontal Hierarchies.
    Brunec IK; Momennejad I
    J Neurosci; 2022 Jan; 42(2):299-312. PubMed ID: 34799416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential hippocampal and prefrontal-striatal contributions to instance-based and rule-based learning.
    Doeller CF; Opitz B; Krick CM; Mecklinger A; Reith W
    Neuroimage; 2006 Jul; 31(4):1802-16. PubMed ID: 16563803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid learning of spatial representations for goal-directed navigation based on a novel model of hippocampal place fields.
    Alabi A; Vanderelst D; Minai AA
    Neural Netw; 2023 Apr; 161():116-128. PubMed ID: 36745937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial scaffold effects in event memory and imagination.
    Robin J
    Wiley Interdiscip Rev Cogn Sci; 2018 Jul; 9(4):e1462. PubMed ID: 29485243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in navigation performance and postpartal striatal volume associated with pregnancy in humans.
    Lisofsky N; Wiener J; de Condappa O; Gallinat J; Lindenberger U; Kühn S
    Neurobiol Learn Mem; 2016 Oct; 134 Pt B():400-7. PubMed ID: 27614142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural signatures of reinforcement learning correlate with strategy adoption during spatial navigation.
    Anggraini D; Glasauer S; Wunderlich K
    Sci Rep; 2018 Jul; 8(1):10110. PubMed ID: 29973606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control.
    Daw ND; Niv Y; Dayan P
    Nat Neurosci; 2005 Dec; 8(12):1704-11. PubMed ID: 16286932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interacting networks of brain regions underlie human spatial navigation: a review and novel synthesis of the literature.
    Ekstrom AD; Huffman DJ; Starrett M
    J Neurophysiol; 2017 Dec; 118(6):3328-3344. PubMed ID: 28931613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation.
    Negrón-Oyarzo I; Espinosa N; Aguilar-Rivera M; Fuenzalida M; Aboitiz F; Fuentealba P
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7123-7128. PubMed ID: 29915053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Head west or left, east or right: interactions between memory systems in neurocognitive aging.
    Tomás Pereira I; Gallagher M; Rapp PR
    Neurobiol Aging; 2015 Nov; 36(11):3067-3078. PubMed ID: 26281759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.