These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26447952)

  • 1. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues.
    Engdahl C; Knutsson S; Fredriksson SÅ; Linusson A; Bucht G; Ekström F
    PLoS One; 2015; 10(10):e0138598. PubMed ID: 26447952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-Aryl-N'-ethyleneaminothioureas effectively inhibit acetylcholinesterase 1 from disease-transmitting mosquitoes.
    Knutsson S; Kindahl T; Engdahl C; Nikjoo D; Forsgren N; Kitur S; Ekström F; Kamau L; Linusson A
    Eur J Med Chem; 2017 Jul; 134():415-427. PubMed ID: 28433681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective and irreversible inhibitors of mosquito acetylcholinesterases for controlling malaria and other mosquito-borne diseases.
    Pang YP; Ekström F; Polsinelli GA; Gao Y; Rana S; Hua DH; Andersson B; Andersson PO; Peng L; Singh SK; Mishra RK; Zhu KY; Fallon AM; Ragsdale DW; Brimijoin S
    PLoS One; 2009 Aug; 4(8):e6851. PubMed ID: 19714254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery of Selective Inhibitors Targeting Acetylcholinesterase 1 from Disease-Transmitting Mosquitoes.
    Engdahl C; Knutsson S; Ekström F; Linusson A
    J Med Chem; 2016 Oct; 59(20):9409-9421. PubMed ID: 27598521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aryl methylcarbamates: potency and selectivity towards wild-type and carbamate-insensitive (G119S) Anopheles gambiae acetylcholinesterase, and toxicity to G3 strain An. gambiae.
    Wong DM; Li J; Lam PC; Hartsel JA; Mutunga JM; Totrov M; Bloomquist JR; Carlier PR
    Chem Biol Interact; 2013 Mar; 203(1):314-8. PubMed ID: 22989775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the G119S Mutant Acetylcholinesterase of the Malaria Vector Anopheles gambiae Reveals Basis of Insecticide Resistance.
    Cheung J; Mahmood A; Kalathur R; Liu L; Carlier PR
    Structure; 2018 Jan; 26(1):130-136.e2. PubMed ID: 29276037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue.
    Chakraborti S; Chhibber-Goel J; Sharma A
    Parasit Vectors; 2021 Dec; 14(1):605. PubMed ID: 34895309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning and characterization of the complete acetylcholinesterase gene (Ace1) from the mosquito Aedes aegypti with implications for comparative genome analysis.
    Mori A; Lobo NF; deBruyn B; Severson DW
    Insect Biochem Mol Biol; 2007 Jul; 37(7):667-74. PubMed ID: 17550823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Select small core structure carbamates exhibit high contact toxicity to "carbamate-resistant" strain malaria mosquitoes, Anopheles gambiae (Akron).
    Wong DM; Li J; Chen QH; Han Q; Mutunga JM; Wysinski A; Anderson TD; Ding H; Carpenetti TL; Verma A; Islam R; Paulson SL; Lam PC; Totrov M; Bloomquist JR; Carlier PR
    PLoS One; 2012; 7(10):e46712. PubMed ID: 23049714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): resistance levels and dominance.
    Djogbénou L; Weill M; Hougard JM; Raymond M; Akogbéto M; Chandre F
    J Med Entomol; 2007 Sep; 44(5):805-10. PubMed ID: 17915512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of angiotensin-converting enzyme from Anopheles gambiae in its native form and with a bound inhibitor.
    Cashman JS; Cozier GE; Harrison C; Isaac RE; Acharya KR
    Biochem J; 2019 Nov; 476(22):3505-3520. PubMed ID: 31682720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of G119S ace-1 (R) mutation in field-collected Anopheles gambiae mosquitoes using allele-specific loop-mediated isothermal amplification (AS-LAMP) method.
    Badolo A; Bando H; Traoré A; Ko-Ketsu M; Guelbeogo WM; Kanuka H; Ranson H; Sagnon N; Fukumoto S
    Malar J; 2015 Dec; 14():477. PubMed ID: 26620269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards a species-selective acetylcholinesterase inhibitor to control the mosquito vector of malaria, Anopheles gambiae.
    Carlier PR; Anderson TD; Wong DM; Hsu DC; Hartsel J; Ma M; Wong EA; Choudhury R; Lam PC; Totrov MM; Bloomquist JR
    Chem Biol Interact; 2008 Sep; 175(1-3):368-75. PubMed ID: 18554580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant expression and biochemical characterization of the catalytic domain of acetylcholinesterase-1 from the African malaria mosquito, Anopheles gambiae.
    Jiang H; Liu S; Zhao P; Pope C
    Insect Biochem Mol Biol; 2009 Sep; 39(9):646-53. PubMed ID: 19607916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and geographic distribution of the ACE-1R mutation in the malaria vector Anopheles gambiae in south-western Burkina Faso, West Africa.
    Djogbénou L; Dabiré R; Diabaté A; Kengne P; Akogbéto M; Hougard JM; Chandre F
    Am J Trop Med Hyg; 2008 Feb; 78(2):298-302. PubMed ID: 18256433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).
    Norris EJ; Gross AD; Dunphy BM; Bessette S; Bartholomay L; Coats JR
    J Med Entomol; 2015 Sep; 52(5):993-1002. PubMed ID: 26336230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative pharmacological characterization of D1-like dopamine receptors from Anopheles gambiae, Aedes aegypti and Culex quinquefasciatus suggests pleiotropic signaling in mosquito vector lineages.
    Hill CA; Doyle T; Nuss AB; Ejendal KF; Meyer JM; Watts VJ
    Parasit Vectors; 2016 Apr; 9():192. PubMed ID: 27048546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity.
    Vaughan A; Rocheleau T; ffrench-Constant R
    Exp Parasitol; 1997 Nov; 87(3):237-44. PubMed ID: 9371089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr(R)) in Anopheles gambiae: a hindrance for insecticide resistance management for malaria vector control.
    Assogba BS; Djogbénou LS; Saizonou J; Milesi P; Djossou L; Djegbe I; Oumbouke WA; Chandre F; Baba-Moussa L; Weill M; Makoutodé M
    Parasit Vectors; 2014 Dec; 7():548. PubMed ID: 25471264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contemporary evolution of resistance at the major insecticide target site gene Ace-1 by mutation and copy number variation in the malaria mosquito Anopheles gambiae.
    Weetman D; Mitchell SN; Wilding CS; Birks DP; Yawson AE; Essandoh J; Mawejje HD; Djogbenou LS; Steen K; Rippon EJ; Clarkson CS; Field SG; Rigden DJ; Donnelly MJ
    Mol Ecol; 2015 Jun; 24(11):2656-72. PubMed ID: 25865270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.