These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 26447986)
1. Immunohistochemical Evaluation of Idiopathic Epiretinal Membranes and In Vitro Studies on the Effect of TGF-β on Müller Cells. Bu SC; Kuijer R; van der Worp RJ; Postma G; Renardel de Lavalette VW; Li XR; Hooymans JM; Los LI Invest Ophthalmol Vis Sci; 2015 Oct; 56(11):6506-14. PubMed ID: 26447986 [TBL] [Abstract][Full Text] [Related]
2. Glial cells and collagens in epiretinal membranes associated with idiopathic macular holes. Bu SC; Kuijer R; van der Worp RJ; Huiskamp EA; Renardel de Lavalette VW; Li XR; Hooymans JM; Los LI Retina; 2014 May; 34(5):897-906. PubMed ID: 24077090 [TBL] [Abstract][Full Text] [Related]
3. Blockade of the TGF-β pathway by galunisertib inhibits the glial-mesenchymal transition in Müller glial cells. da Silva RA; Roda VMP; Akamine PS; da Silva DS; Siqueira PV; Matsuda M; Hamassaki DE Exp Eye Res; 2023 Jan; 226():109336. PubMed ID: 36455675 [TBL] [Abstract][Full Text] [Related]
4. Substrate Elastic Modulus Regulates the Morphology, Focal Adhesions, and α-Smooth Muscle Actin Expression of Retinal Müller Cells. Bu SC; Kuijer R; van der Worp RJ; van Putten SM; Wouters O; Li XR; Hooymans JM; Los LI Invest Ophthalmol Vis Sci; 2015 Sep; 56(10):5974-82. PubMed ID: 26377083 [TBL] [Abstract][Full Text] [Related]
5. Heat Shock Protein 90 Involvement in the Development of Idiopathic Epiretinal Membranes. Tosi GM; Regoli M; Altera A; Galvagni F; Arcuri C; Bacci T; Elia I; Realini G; Orlandini M; Bertelli E Invest Ophthalmol Vis Sci; 2020 Jul; 61(8):34. PubMed ID: 32716502 [TBL] [Abstract][Full Text] [Related]
7. TGF-β-SNAIL axis induces Müller glial-mesenchymal transition in the pathogenesis of idiopathic epiretinal membrane. Kanda A; Noda K; Hirose I; Ishida S Sci Rep; 2019 Jan; 9(1):673. PubMed ID: 30679596 [TBL] [Abstract][Full Text] [Related]
8. Epo inhibits the fibrosis and migration of Müller glial cells induced by TGF-β and high glucose. Luo W; Hu L; Li W; Xu G; Xu L; Zhang C; Wang F Graefes Arch Clin Exp Ophthalmol; 2016 May; 254(5):881-90. PubMed ID: 26907931 [TBL] [Abstract][Full Text] [Related]
9. In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). Limb GA; Salt TE; Munro PM; Moss SE; Khaw PT Invest Ophthalmol Vis Sci; 2002 Mar; 43(3):864-9. PubMed ID: 11867609 [TBL] [Abstract][Full Text] [Related]
10. Vitreous from idiopathic epiretinal membrane patients induces glial-to-mesenchymal transition in Müller cells. Krishna Chandran AM; Coltrini D; Belleri M; Rezzola S; Gambicorti E; Romano D; Morescalchi F; Calza S; Semeraro F; Presta M Biochim Biophys Acta Mol Basis Dis; 2021 Oct; 1867(10):166181. PubMed ID: 34082068 [TBL] [Abstract][Full Text] [Related]
11. The Role of Inverted Internal Limiting Membrane Flap in Macular Hole Closure. Shiode Y; Morizane Y; Matoba R; Hirano M; Doi S; Toshima S; Takahashi K; Araki R; Kanzaki Y; Hosogi M; Yonezawa T; Yoshida A; Shiraga F Invest Ophthalmol Vis Sci; 2017 Sep; 58(11):4847-4855. PubMed ID: 28973331 [TBL] [Abstract][Full Text] [Related]
12. Tractional force generation by human müller cells: growth factor responsiveness and integrin receptor involvement. Guidry C; Bradley KM; King JL Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1355-63. PubMed ID: 12601069 [TBL] [Abstract][Full Text] [Related]
13. Cellular stress response in human Müller cells (MIO-M1) after bevacizumab treatment. Matsuda M; Krempel PG; Marquezini MV; Sholl-Franco A; Lameu A; Monteiro MLR; Miguel NCO Exp Eye Res; 2017 Jul; 160():1-10. PubMed ID: 28419863 [TBL] [Abstract][Full Text] [Related]
14. Simvastatin inhibits transforming growth factor-β1-induced expression of type I collagen, CTGF, and α-SMA in keloid fibroblasts. Mun JH; Kim YM; Kim BS; Kim JH; Kim MB; Ko HC Wound Repair Regen; 2014; 22(1):125-33. PubMed ID: 24471776 [TBL] [Abstract][Full Text] [Related]
15. Effect of simvastatin on transforming growth factor beta-1-induced myofibroblast differentiation and collagen production in nasal polyp-derived fibroblasts. Park IH; Park SJ; Cho JS; Moon YM; Moon JH; Kim TH; Lee SH; Lee HM Am J Rhinol Allergy; 2012; 26(1):7-11. PubMed ID: 22391067 [TBL] [Abstract][Full Text] [Related]
16. [Effects of sodium tanshinone II A sulfonate on proliferation of fibroblasts in scar and the mRNA and protein expressions of transforming growth factor beta 1 and alpha smooth muscle actin]. Liu H; Yang HL; Zhou SF; Meng CY Zhonghua Shao Shang Za Zhi; 2013 Jun; 29(3):294-9. PubMed ID: 24059958 [TBL] [Abstract][Full Text] [Related]
17. Role of reactive oxygen species in transforming growth factor beta1-induced alpha smooth-muscle actin and collagen production in nasal polyp-derived fibroblasts. Park IH; Park SJ; Cho JS; Moon YM; Kim TH; Lee SH; Lee HM Int Arch Allergy Immunol; 2012; 159(3):278-86. PubMed ID: 22722757 [TBL] [Abstract][Full Text] [Related]
18. Tractional force generation by porcine Müller cells. Development and differential stimulation by growth factors. Guidry C Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):456-68. PubMed ID: 9040479 [TBL] [Abstract][Full Text] [Related]