These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 26448140)
1. Impact of Surface Chemistry on Nanoparticle-Electrode Interactions in the Electrochemical Detection of Nanoparticle Collisions. Chen CH; Ravenhill ER; Momotenko D; Kim YR; Lai SC; Unwin PR Langmuir; 2015 Nov; 31(43):11932-42. PubMed ID: 26448140 [TBL] [Abstract][Full Text] [Related]
2. Effect of Supporting Background Electrolytes on the Nanostructure Morphologies and Electrochemical Behaviors of Electrodeposited Gold Nanoparticles on Glassy Carbon Electrode Surfaces. Zakaria ND; Omar MH; Ahmad Kamal NN; Abdul Razak K; Sönmez T; Balakrishnan V; Hamzah HH ACS Omega; 2021 Sep; 6(38):24419-24431. PubMed ID: 34604624 [TBL] [Abstract][Full Text] [Related]
3. Multi-technique Characterization of Self-assembled Carboxylic Acid Terminated Alkanethiol Monolayers on Nanoparticle and Flat Gold Surfaces. Techane SD; Gamble LJ; Castner DG J Phys Chem C Nanomater Interfaces; 2011 Apr; 115(19):9432-9441. PubMed ID: 21603069 [TBL] [Abstract][Full Text] [Related]
4. Controlling the Collision Type and Frequency of Single Pt Nanoparticles at Chemically Modified Gold Electrodes. Pumford A; White RJ Anal Chem; 2024 Mar; 96(12):4800-4808. PubMed ID: 38470344 [TBL] [Abstract][Full Text] [Related]
5. Pt Nanoparticle Collisions Detected by Electrocatalytic Amplification and Atomic Force Microscopy Imaging: Nanoparticle Collision Frequency, Adsorption, and Random Distribution at an Ultramicroelectrode Surface. Ortiz-Ledón CA; Zoski CG Anal Chem; 2017 Jun; 89(12):6424-6431. PubMed ID: 28541030 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical performance of gold nanoparticle-cytochrome c hybrid interface for H2O2 detection. Yagati AK; Lee T; Min J; Choi JW Colloids Surf B Biointerfaces; 2012 Apr; 92():161-7. PubMed ID: 22197224 [TBL] [Abstract][Full Text] [Related]
8. Redox Switchable Polydopamine-Modified AFM-SECM Probes: A Probe for Electrochemical Force Spectroscopy. Daboss S; Lin J; Godejohann M; Kranz C Anal Chem; 2020 Jun; 92(12):8404-8413. PubMed ID: 32337984 [TBL] [Abstract][Full Text] [Related]
9. Chemical force microscopy of self-assembled monolayers on sputtered gold films patterned by phase separation. Fujihira M; Tani Y; Furugori M; Akiba U; Okabe Y Ultramicroscopy; 2001 Jan; 86(1-2):63-73. PubMed ID: 11215635 [TBL] [Abstract][Full Text] [Related]
10. Electrochemistry at One Nanoparticle. Mirkin MV; Sun T; Yu Y; Zhou M Acc Chem Res; 2016 Oct; 49(10):2328-2335. PubMed ID: 27626289 [TBL] [Abstract][Full Text] [Related]
11. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Kannan P; John SA Anal Biochem; 2009 Mar; 386(1):65-72. PubMed ID: 19111516 [TBL] [Abstract][Full Text] [Related]
12. Voltammetrically controlled electron transfer reactions from alkanethiol modified gold electrode surfaces to low molecular weight molecules deposited within lipid (lecithin) bilayers. Yao WW; Tan YS; Low YX; Yuen JS; Lau C; Webster RD J Phys Chem B; 2009 Nov; 113(46):15263-71. PubMed ID: 19863099 [TBL] [Abstract][Full Text] [Related]
13. Sequential electrochemical oxidation and site-selective growth of nanoparticles onto AFM probes. Wang H; Tian T; Zhang Y; Pan Z; Wang Y; Xiao Z Langmuir; 2008 Aug; 24(16):8918-22. PubMed ID: 18597502 [TBL] [Abstract][Full Text] [Related]
14. Small Gold Nanoparticles Interfaced to Electrodes through Molecular Linkers: A Platform to Enhance Electron Transfer and Increase Electrochemically Active Surface Area. Young SL; Kellon JE; Hutchison JE J Am Chem Soc; 2016 Oct; 138(42):13975-13984. PubMed ID: 27681856 [TBL] [Abstract][Full Text] [Related]
15. Using scanning electrochemical microscopy (SECM) to measure the electron-transfer kinetics of cytochrome c immobilized on a COOH-terminated alkanethiol monolayer on a gold electrode. Holt KB Langmuir; 2006 Apr; 22(9):4298-304. PubMed ID: 16618178 [TBL] [Abstract][Full Text] [Related]
16. Effect of Electrode Surface Chemistry on Ion Structuring of Imidazolium Ionic Liquids. Su Y; Wang T; Zhang F; Huang J; Zhu Z; Shah FU; Xu F; An R Langmuir; 2023 Jun; 39(24):8463-8474. PubMed ID: 37289976 [TBL] [Abstract][Full Text] [Related]
17. The fabrication of stable gold nanoparticle-modified interfaces for electrochemistry. Liu G; Luais E; Gooding JJ Langmuir; 2011 Apr; 27(7):4176-83. PubMed ID: 21348487 [TBL] [Abstract][Full Text] [Related]
18. Mechanism underlying bioinertness of self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Hayashi T; Tanaka Y; Koide Y; Tanaka M; Hara M Phys Chem Chem Phys; 2012 Aug; 14(29):10196-206. PubMed ID: 22717889 [TBL] [Abstract][Full Text] [Related]
19. Electrochemically deposited gold nanoparticles on a carbon paste electrode surface for the determination of mercury. Sahoo S; Satpati AK; Reddy AV J AOAC Int; 2015; 98(2):506-11. PubMed ID: 25905757 [TBL] [Abstract][Full Text] [Related]
20. Controlling osteopontin orientation on surfaces to modulate endothelial cell adhesion. Liu L; Chen S; Giachelli CM; Ratner BD; Jiang S J Biomed Mater Res A; 2005 Jul; 74(1):23-31. PubMed ID: 15920735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]