These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 26448495)

  • 1. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.
    Li J; Wang G; Xu Z
    J Hazard Mater; 2016 Jan; 302():97-104. PubMed ID: 26448495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.
    Xiao J; Li J; Xu Z
    J Hazard Mater; 2017 Sep; 338():124-131. PubMed ID: 28544937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting.
    Zhang Z; Zhu X; Hou H; Tang L; Xiao J; Zhong Q
    Waste Manag; 2022 Aug; 150():30-38. PubMed ID: 35792439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An emission-free controlled potassium pyrosulfate roasting-assisted leaching process for selective lithium recycling from spent Li-ion batteries.
    Liu C; Ji H; Liu J; Liu P; Zeng G; Luo X; Guan Q; Mi X; Li Y; Zhang J; Tong Y; Wang Z; Wu S
    Waste Manag; 2022 Nov; 153():52-60. PubMed ID: 36049272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Approach for in Situ Recovery of Lithium Carbonate from Spent Lithium Ion Batteries Using Vacuum Metallurgy.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11960-11966. PubMed ID: 28915021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An innovative approach to recover the metal values from spent lithium-ion batteries.
    Barik SP; Prabaharan G; Kumar B
    Waste Manag; 2016 May; 51():222-226. PubMed ID: 26553316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Roasting Flotation Technology to Enrich Valuable Metals from Spent LiFePO
    Li J; Zhang J; Zhao W; Lu D; Ren G; Tu Y
    ACS Omega; 2022 Jul; 7(29):25590-25599. PubMed ID: 35910132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repurposing of spent lithium-ion battery separator as a green reductant for efficiently refining the cathode metals.
    Hou W; Huang X; Tang R; Min Y; Xu Q; Hu Z; Shi P
    Waste Manag; 2023 Jan; 155():129-136. PubMed ID: 36370622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical strategies for recycling process of graphite from spent lithium-ion batteries: A review.
    Liu J; Shi H; Hu X; Geng Y; Yang L; Shao P; Luo X
    Sci Total Environ; 2022 Apr; 816():151621. PubMed ID: 34780818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries.
    Wang M; Tan Q; Li J
    Environ Sci Technol; 2018 Nov; 52(22):13136-13143. PubMed ID: 30207705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel method for carbon removal and valuable metal recovery by incorporating steam into the reduction-roasting process of spent lithium-ion batteries.
    Peng Q; Zhu X; Li J; Liao Q; Lai Y; Zhang L; Fu Q; Zhu X
    Waste Manag; 2021 Oct; 134():100-109. PubMed ID: 34418740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery.
    He K; Zhang ZY; Zhang FS
    Waste Manag; 2021 Apr; 124():283-292. PubMed ID: 33640668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.