BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26448504)

  • 21. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping.
    Zhou S; Liu J; Xu M; Lv J; Sun N
    Environ Sci Pollut Res Int; 2015 Oct; 22(19):15154-63. PubMed ID: 26004564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heavy metals bioconcentration from soil to vegetables and appraisal of health risk in Koka and Wonji farms, Ethiopia.
    Eliku T; Leta S
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11807-11815. PubMed ID: 28342080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field controlled experiments of mercury accumulation in crops from air and soil.
    Niu Z; Zhang X; Wang Z; Ci Z
    Environ Pollut; 2011 Oct; 159(10):2684-9. PubMed ID: 21723013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS.
    Liu X; Wu J; Xu J
    Environ Pollut; 2006 May; 141(2):257-64. PubMed ID: 16271428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Application of ICP-MS to detection of heavy metals in soil from different cropping systems].
    Rui YK; Kong XB; Qin J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun; 27(6):1201-3. PubMed ID: 17763792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting As, Cd, Cu, Pb and Zn levels in grasses (Agrostis sp. and Poa sp.) and stinging nettle (Urtica dioica) applying soil-plant transfer models.
    Boshoff M; De Jonge M; Scheifler R; Bervoets L
    Sci Total Environ; 2014 Sep; 493():862-71. PubMed ID: 25000582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India.
    Kumar Sharma R; Agrawal M; Marshall F
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):258-66. PubMed ID: 16466660
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China.
    Guan Q; Wang F; Xu C; Pan N; Lin J; Zhao R; Yang Y; Luo H
    Chemosphere; 2018 Feb; 193():189-197. PubMed ID: 29131977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Macronutrients and trace metals in soil and food crops of Isfahan Province, Iran.
    Keshavarzi B; Moore F; Ansari M; Rastegari Mehr M; Kaabi H; Kermani M
    Environ Monit Assess; 2015 Jan; 187(1):4113. PubMed ID: 25416129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Multivariate geostatistics and GIS-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China].
    Cai LM; Ma J; Zhou YZ; Huang LC; Dou L; Zhang CB; Fu SM
    Huan Jing Ke Xue; 2008 Dec; 29(12):3496-502. PubMed ID: 19256391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan.
    Khan K; Lu Y; Khan H; Ishtiaq M; Khan S; Waqas M; Wei L; Wang T
    Food Chem Toxicol; 2013 Aug; 58():449-58. PubMed ID: 23721688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal accumulation in balsam pear and cowpea related to the geochemical factors of variable-charge soils in the Pearl River Delta, South China.
    Chang CY; Xu XH; Liu CP; Li SY; Liao XR; Dong J; Li FB
    Environ Sci Process Impacts; 2014 Jul; 16(7):1790-8. PubMed ID: 24855639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China.
    Sun C; Liu J; Wang Y; Sun L; Yu H
    Chemosphere; 2013 Jul; 92(5):517-23. PubMed ID: 23608467
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Safe utilization and zoning on natural selenium-rich land resources: a case study of the typical area in Enshi County, China.
    Yu T; Hou W; Hou Q; Ma W; Xia X; Li Y; Yan B; Yang Z
    Environ Geochem Health; 2020 Sep; 42(9):2803-2818. PubMed ID: 32036508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy.
    Wang C; Li W; Guo M; Ji J
    Sci Rep; 2017 Feb; 7():40709. PubMed ID: 28198802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Translocation and bioaccumulation of metals in Oryza sativa and Zea mays growing in chromite-asbestos contaminated agricultural fields, Jharkhand, India.
    Kumar A; Maiti SK
    Bull Environ Contam Toxicol; 2014 Oct; 93(4):434-41. PubMed ID: 25085250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Heavy metal concentrations and pollution assessment of edible crops grown on restored manganese mine lands in Guangxi, South China].
    Lai YP; Li MS; Yang SX; Chen CQ
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1801-6. PubMed ID: 17974248
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China.
    Liao J; Wen Z; Ru X; Chen J; Wu H; Wei C
    Ecotoxicol Environ Saf; 2016 Feb; 124():460-469. PubMed ID: 26629658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Spatial variability of farmland heavy metals contents in Qianan City].
    Wang B; Wang Y; Li D; Gao Y; Mao R
    Ying Yong Sheng Tai Xue Bao; 2006 Aug; 17(8):1495-500. PubMed ID: 17066710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.