BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 26449190)

  • 1. Mononuclear iron(iii) complexes of tridentate ligands with efficient nuclease activity and studies of their cytotoxicity.
    Tyagi N; Chakraborty A; Singh UP; Roy P; Ghosh K
    Org Biomol Chem; 2015 Dec; 13(47):11445-58. PubMed ID: 26449190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilization of Mn(II) and Mn(III) in mononuclear complexes derived from tridentate ligands with N2O donors: synthesis, crystal structure, superoxide dismutase activity and DNA interaction studies.
    Ghosh K; Tyagi N; Kumar P; Singh UP; Goel N
    J Inorg Biochem; 2010 Jan; 104(1):9-18. PubMed ID: 19875175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous reduction of mononuclear high-spin iron(III) complexes to mononuclear low-spin iron(II) complexes in aqueous media and nuclease activity via self-activation.
    Ghosh K; Tyagi N; Kumar Dhara A; Singh UP
    Chem Asian J; 2015 Feb; 10(2):350-61. PubMed ID: 25488050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron(III) complexes of tridentate 3N ligands as functional models for catechol dioxygenases: the role of ligand N-alkyl substitution and solvent on reaction rate and product selectivity.
    Visvaganesan K; Mayilmurugan R; Suresh E; Palaniandavar M
    Inorg Chem; 2007 Nov; 46(24):10294-306. PubMed ID: 17958355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement in intramolecular interactions and in vitro biological activity of a tripodal tetradentate system upon complexation.
    Tyagi N; Viji M; Karunakaran SC; Varughese S; Ganesan S; Priya S; Saneesh Babu PS; Nair AS; Ramaiah D
    Dalton Trans; 2015 Sep; 44(35):15591-601. PubMed ID: 26244289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accessibility and selective stabilization of the principal spin states of iron by pyridyl versus phenolic ketimines: modulation of the 6A1 ↔ 2T2 ground-state transformation of the [FeN4O2]+ chromophore.
    Shongwe MS; Al-Zaabi UA; Al-Mjeni F; Eribal CS; Sinn E; Al-Omari IA; Hamdeh HH; Matoga D; Adams H; Morris MJ; Rheingold AL; Bill E; Sellmyer DJ
    Inorg Chem; 2012 Aug; 51(15):8241-53. PubMed ID: 22808945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel square pyramidal iron(III) complexes of linear tetradentate bis(phenolate) ligands as structural and reactive models for intradiol-cleaving 3,4-PCD enzymes: Quinone formation vs. intradiol cleavage.
    Mayilmurugan R; Sankaralingam M; Suresh E; Palaniandavar M
    Dalton Trans; 2010 Oct; 39(40):9611-25. PubMed ID: 20835480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-activating nuclease and anticancer activities of copper(II) complexes with aryl-modified 2,6-di(thiazol-2-yl)pyridine.
    Li L; Du K; Wang Y; Jia H; Hou X; Chao H; Ji L
    Dalton Trans; 2013 Aug; 42(32):11576-88. PubMed ID: 23843095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.
    Sundaravel K; Dhanalakshmi T; Suresh E; Palaniandavar M
    Dalton Trans; 2008 Dec; (48):7012-25. PubMed ID: 19050788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel 1D chain Fe(III)-salen-like complexes involving anionic heterocyclic N-donor ligands. Synthesis, X-ray structure, magnetic, (57)Fe Mössbauer, and biological activity studies.
    Herchel R; Sindelár Z; Trávnícek Z; Zboril R; Vanco J
    Dalton Trans; 2009 Nov; (44):9870-80. PubMed ID: 19885536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron(III) complexes of sterically hindered tetradentate monophenolate ligands as functional models for catechol 1,2-dioxygenases: the role of ligand stereoelectronic properties.
    Velusamy M; Mayilmurugan R; Palaniandavar M
    Inorg Chem; 2004 Oct; 43(20):6284-93. PubMed ID: 15446874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies of iron(II) and iron(III) complexes with fac-N2O, cis-N2O2 and N2O3 donor ligands: models for the 2-His 1-carboxylate motif of non-heme iron monooxygenases.
    Cappillino PJ; Miecznikowski JR; Tyler LA; Tarves PC; McNally JS; Lo W; Kasibhatla BS; Krzyaniak MD; McCracken J; Wang F; Armstrong WH; Caradonna JP
    Dalton Trans; 2012 May; 41(18):5662-77. PubMed ID: 22434362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and reactivity studies on new copper(II) complexes: DNA binding, generation of phenoxyl radical, SOD and nuclease activities.
    Ghosh K; Kumar P; Tyagi N; Singh UP; Aggarwal V; Baratto MC
    Eur J Med Chem; 2010 Sep; 45(9):3770-9. PubMed ID: 20547433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron(III) complexes of a pyridoxal Schiff base for enhanced cellular uptake with selectivity and remarkable photocytotoxicity.
    Basu U; Pant I; Hussain A; Kondaiah P; Chakravarty AR
    Inorg Chem; 2015 Apr; 54(8):3748-58. PubMed ID: 25849848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron(III) complexes of N2O and N3O donor ligands as functional models for catechol dioxygenase enzymes: ether oxygen coordination tunes the regioselectivity and reactivity.
    Sundaravel K; Suresh E; Saminathan K; Palaniandavar M
    Dalton Trans; 2011 Aug; 40(32):8092-107. PubMed ID: 21766098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. End-on and side-on peroxo derivatives of non-heme iron complexes with pentadentate ligands: models for putative intermediates in biological iron/dioxygen chemistry.
    Roelfes G; Vrajmasu V; Chen K; Ho RY; Rohde JU; Zondervan C; La Crois RM; Schudde EP; Lutz M; Spek AL; Hage R; Feringa BL; Münck E; Que L
    Inorg Chem; 2003 Apr; 42(8):2639-53. PubMed ID: 12691572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel diphenoxo-bridged dinuclear zinc complexes: generation of phenoxyl-radical species and nuclease activity.
    Ghosh K; Kumar P; Tyagi N; Singh UP
    Inorg Chem; 2010 Sep; 49(17):7614-6. PubMed ID: 20666509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent mixed ligand copper(II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity.
    Jaividhya P; Ganeshpandian M; Dhivya R; Akbarsha MA; Palaniandavar M
    Dalton Trans; 2015 Jul; 44(26):11997-2010. PubMed ID: 26076117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA binding, nuclease activity and cytotoxicity studies of Cu(II) complexes of tridentate ligands.
    Kumar P; Gorai S; Santra MK; Mondal B; Manna D
    Dalton Trans; 2012 Jul; 41(25):7573-81. PubMed ID: 22588369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient synthetic iron-dependent nucleases activate both intrinsic and extrinsic apoptotic death pathways in leukemia cancer cells.
    Horn A; Fernandes C; Parrilha GL; Kanashiro MM; Borges FV; de Melo EJ; Schenk G; Terenzi H; Pich CT
    J Inorg Biochem; 2013 Nov; 128():38-47. PubMed ID: 23933562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.