BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26449312)

  • 1. A computational approach to determine susceptibility to cancer by evaluating the deleterious effect of nsSNP in XRCC1 gene on binding interaction of XRCC1 protein with ligase III.
    Singh PK; Mistry KN
    Gene; 2016 Jan; 576(1 Pt 1):141-9. PubMed ID: 26449312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair.
    Gao Y; Katyal S; Lee Y; Zhao J; Rehg JE; Russell HR; McKinnon PJ
    Nature; 2011 Mar; 471(7337):240-4. PubMed ID: 21390131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair.
    Simsek D; Furda A; Gao Y; Artus J; Brunet E; Hadjantonakis AK; Van Houten B; Shuman S; McKinnon PJ; Jasin M
    Nature; 2011 Mar; 471(7337):245-8. PubMed ID: 21390132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a BRCT domain in the interaction of DNA ligase III-alpha with the DNA repair protein XRCC1.
    Taylor RM; Wickstead B; Cronin S; Caldecott KW
    Curr Biol; 1998 Jul; 8(15):877-80. PubMed ID: 9705932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BRCT domain interactions in the heterodimeric DNA repair protein XRCC1-DNA ligase III.
    Dulic A; Bates PA; Zhang X; Martin SR; Freemont PS; Lindahl T; Barnes DE
    Biochemistry; 2001 May; 40(20):5906-13. PubMed ID: 11352725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III.
    Caldecott KW; McKeown CK; Tucker JD; Ljungquist S; Thompson LH
    Mol Cell Biol; 1994 Jan; 14(1):68-76. PubMed ID: 8264637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disconnecting XRCC1 and DNA ligase III.
    Katyal S; McKinnon PJ
    Cell Cycle; 2011 Jul; 10(14):2269-75. PubMed ID: 21636980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro.
    Caldecott KW; Aoufouchi S; Johnson P; Shall S
    Nucleic Acids Res; 1996 Nov; 24(22):4387-94. PubMed ID: 8948628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial DNA ligase III function is independent of Xrcc1.
    Lakshmipathy U; Campbell C
    Nucleic Acids Res; 2000 Oct; 28(20):3880-6. PubMed ID: 11024166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Nucleotide Polymorphisms of Genes Involved in Repair of Oxidative DNA Damage and the Risk of Recurrent Depressive Disorder.
    Czarny P; Kwiatkowski D; Toma M; Gałecki P; Orzechowska A; Bobińska K; Bielecka-Kowalska A; Szemraj J; Berk M; Anderson G; Śliwiński T
    Med Sci Monit; 2016 Nov; 22():4455-4474. PubMed ID: 27866211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair.
    Cappelli E; Taylor R; Cevasco M; Abbondandolo A; Caldecott K; Frosina G
    J Biol Chem; 1997 Sep; 272(38):23970-5. PubMed ID: 9295348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells.
    Caldecott KW; Tucker JD; Stanker LH; Thompson LH
    Nucleic Acids Res; 1995 Dec; 23(23):4836-43. PubMed ID: 8532526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered DNA ligase III activity in the CHO EM9 mutant.
    Ljungquist S; Kenne K; Olsson L; Sandström M
    Mutat Res; 1994 Mar; 314(2):177-86. PubMed ID: 7510367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XRCC1-DNA polymerase beta interaction is required for efficient base excision repair.
    Dianova II; Sleeth KM; Allinson SL; Parsons JL; Breslin C; Caldecott KW; Dianov GL
    Nucleic Acids Res; 2004; 32(8):2550-5. PubMed ID: 15141024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of Nonsynonymous Single Nucleotide Polymorphisms of Adiponectin Receptor 1 Gene on Corresponding Protein Stability: A Computational Approach.
    Saleh MA; Solayman M; Paul S; Saha M; Khalil MI; Gan SH
    Biomed Res Int; 2016; 2016():9142190. PubMed ID: 27294143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extrapolating the effect of deleterious nsSNPs in the binding adaptability of flavopiridol with CDK7 protein: a molecular dynamics approach.
    George Priya Doss C; Nagasundaram N; Chakraborty C; Chen L; Zhu H
    Hum Genomics; 2013 Apr; 7(1):10. PubMed ID: 23561625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rescue of Xrcc1 knockout mouse embryo lethality by transgene-complementation.
    Tebbs RS; Thompson LH; Cleaver JE
    DNA Repair (Amst); 2003 Dec; 2(12):1405-17. PubMed ID: 14642568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early decrease of XRCC1, a DNA base excision repair protein, may contribute to DNA fragmentation after transient focal cerebral ischemia in mice.
    Fujimura M; Morita-Fujimura Y; Sugawara T; Chan PH
    Stroke; 1999 Nov; 30(11):2456-62; discussion 2463. PubMed ID: 10548684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CHO XRCC1 mutant, EM9, deficient in DNA ligase III activity, exhibits hypersensitivity to camptothecin independent of DNA replication.
    Barrows LR; Holden JA; Anderson M; D'Arpa P
    Mutat Res; 1998 Aug; 408(2):103-10. PubMed ID: 9739812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination.
    Mackey ZB; Ramos W; Levin DS; Walter CA; McCarrey JR; Tomkinson AE
    Mol Cell Biol; 1997 Feb; 17(2):989-98. PubMed ID: 9001252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.