These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 26449571)

  • 21. High levels of antimony in dust from e-waste recycling in southeastern China.
    Bi X; Li Z; Zhuang X; Han Z; Yang W
    Sci Total Environ; 2011 Nov; 409(23):5126-8. PubMed ID: 21907394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pretreated waste landfilling: relation between leachate characteristics and mechanical behaviour.
    Boni MR; Chiavola A; Sbaffoni S
    Waste Manag; 2006; 26(10):1156-65. PubMed ID: 16513340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leachability of municipal solid waste ashes in simulated landfill conditions.
    Li LY; Ohtsubo M; Higashi T; Yamaoka S; Morishita T
    Waste Manag; 2007; 27(7):932-45. PubMed ID: 17258447
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geochemical behaviors of antimony in mining-affected water environment (Southwest China).
    Li L; Tu H; Zhang S; Wu L; Wu M; Tang Y; Wu P
    Environ Geochem Health; 2019 Dec; 41(6):2397-2411. PubMed ID: 30972516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Treatment of air pollution control residues with iron rich waste sulfuric acid: does it work for antimony (Sb)?
    Okkenhaug G; Breedveld GD; Kirkeng T; Lægreid M; Mæhlum T; Mulder J
    J Hazard Mater; 2013 Mar; 248-249():159-66. PubMed ID: 23465722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water.
    Westerhoff P; Prapaipong P; Shock E; Hillaireau A
    Water Res; 2008 Feb; 42(3):551-6. PubMed ID: 17707454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solid waste characteristics and their relationship to gas production in tropical landfill.
    Chiemchaisri C; Chiemchaisri W; Kumar S; Hettiaratchi JP
    Environ Monit Assess; 2007 Dec; 135(1-3):41-8. PubMed ID: 17458513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spatial distribution of antimony and arsenic levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas.
    Baeza M; Ren J; Krishnamurthy S; Vaughan TC
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):299-314. PubMed ID: 19629573
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In situ speciation of dissolved inorganic antimony in surface waters and sediment porewaters: development of a thiol-based diffusive gradients in thin films technique for Sb(III).
    Bennett WW; Arsic M; Welsh DT; Teasdale PR
    Environ Sci Process Impacts; 2016 Aug; 18(8):992-8. PubMed ID: 27192548
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gas production, composition and emission at a modern disposal site receiving waste with a low-organic content.
    Scheutz C; Fredenslund AM; Nedenskov J; Samuelsson J; Kjeldsen P
    Waste Manag; 2011 May; 31(5):946-55. PubMed ID: 21186118
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative lysimeters studies for landfill leachate characterization and settlement variation in partly sorted municipal solid waste and fully sorted organic wastes.
    Khan AS; Narulkar SM
    J Environ Sci Eng; 2010 Apr; 52(2):107-12. PubMed ID: 21114117
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emission of volatile organic compounds from solid waste disposal sites and importance of heat management.
    Urase T; Okumura H; Panyosaranya S; Inamura A
    Waste Manag Res; 2008 Dec; 26(6):534-8. PubMed ID: 19039069
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimony leaching from uncarbonated and carbonated MSWI bottom ash.
    Cornelis G; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2006 Oct; 137(3):1284-92. PubMed ID: 16730886
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
    Cornelis G; Van Gerven T; Vandecasteele C
    Waste Manag; 2012 Feb; 32(2):278-86. PubMed ID: 22035902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New characterisation method of electrical and electronic equipment wastes (WEEE).
    Menad N; Guignot S; van Houwelingen JA
    Waste Manag; 2013 Mar; 33(3):706-13. PubMed ID: 22784477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. LC-ICP-OES method for antimony speciation analysis in liquid samples.
    Moreno-Andrade I; Regidor-Alfageme E; Durazo A; Field JA; Umlauf K; Sierra-Alvarez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(4):457-463. PubMed ID: 31905046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete.
    Gidarakos E; Havas G; Ntzamilis P
    Waste Manag; 2006; 26(6):668-79. PubMed ID: 16207528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.
    Naganathan S; Razak HA; Hamid SN
    Waste Manag Res; 2010 Sep; 28(9):848-60. PubMed ID: 20852000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Classification of in-flight catering wastes in Egypt air flights and its potential as energy source (chemical approach).
    El-Mobaidh AM; Razek Taha MA; Lassheen NK
    Waste Manag; 2006; 26(6):587-91. PubMed ID: 15949935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: a full-scale study.
    Hyks J; Astrup T
    Chemosphere; 2009 Aug; 76(9):1178-84. PubMed ID: 19595431
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.