These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 26449620)

  • 41. Development of aldolase-based catalysts for the synthesis of organic chemicals.
    Lee SH; Yeom SJ; Kim SE; Oh DK
    Trends Biotechnol; 2022 Mar; 40(3):306-319. PubMed ID: 34462144
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly enantioselective direct syn- and anti-aldol reactions of dihydroxyacetones catalyzed by chiral primary amine catalysts.
    Luo S; Xu H; Zhang L; Li J; Cheng JP
    Org Lett; 2008 Feb; 10(4):653-6. PubMed ID: 18215050
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase.
    Jennewein S; Schürmann M; Wolberg M; Hilker I; Luiten R; Wubbolts M; Mink D
    Biotechnol J; 2006 May; 1(5):537-48. PubMed ID: 16892289
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural and Functional Characterization of YdjI, an Aldolase of Unknown Specificity in
    Huddleston JP; Thoden JB; Dopkins BJ; Narindoshvili T; Fose BJ; Holden HM; Raushel FM
    Biochemistry; 2019 Aug; 58(31):3340-3353. PubMed ID: 31322866
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Schulte M; Stoldt M; Neudecker P; Pietruszka J; Willbold D; Panwalkar V
    Biomol NMR Assign; 2017 Oct; 11(2):197-201. PubMed ID: 28560616
    [TBL] [Abstract][Full Text] [Related]  

  • 46. D-fructose-6-phosphate aldolase in organic synthesis: cascade chemical-enzymatic preparation of sugar-related polyhydroxylated compounds.
    Concia AL; Lozano C; Castillo JA; Parella T; Joglar J; Clapés P
    Chemistry; 2009; 15(15):3808-16. PubMed ID: 19222084
    [TBL] [Abstract][Full Text] [Related]  

  • 47. In water, on water, and by water: mimicking nature's aldolases with organocatalysis and water.
    Mase N; Barbas CF
    Org Biomol Chem; 2010 Sep; 8(18):4043-50. PubMed ID: 20617260
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent progress in stereoselective synthesis with aldolases.
    Clapés P; Fessner WD; Sprenger GA; Samland AK
    Curr Opin Chem Biol; 2010 Apr; 14(2):154-67. PubMed ID: 20071212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Directed evolution of a pyruvate aldolase to recognize a long chain acyl substrate.
    Cheriyan M; Walters MJ; Kang BD; Anzaldi LL; Toone EJ; Fierke CA
    Bioorg Med Chem; 2011 Nov; 19(21):6447-53. PubMed ID: 21944547
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution.
    Williams GJ; Domann S; Nelson A; Berry A
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3143-8. PubMed ID: 12626743
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Substrate range of acetohydroxy acid synthase I from Escherichia coli in the stereoselective synthesis of alpha-hydroxy ketones.
    Engel S; Vyazmensky M; Berkovich D; Barak Z; Chipman DM
    Biotechnol Bioeng; 2004 Dec; 88(7):825-31. PubMed ID: 15558598
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical and structural exploration of the catalytic capacity of Sulfolobus KDG aldolases.
    Wolterink-van Loo S; van Eerde A; Siemerink MA; Akerboom J; Dijkstra BW; van der Oost J
    Biochem J; 2007 May; 403(3):421-30. PubMed ID: 17176250
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates.
    Buchanan CL; Connaris H; Danson MJ; Reeve CD; Hough DW
    Biochem J; 1999 Nov; 343 Pt 3(Pt 3):563-70. PubMed ID: 10527934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mimicking aldolases through organocatalysis: syn-selective aldol reactions with protected dihydroxyacetone.
    Utsumi N; Imai M; Tanaka F; Ramasastry SS; Barbas CF
    Org Lett; 2007 Aug; 9(17):3445-8. PubMed ID: 17645352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering aldolases as biocatalysts.
    Windle CL; Müller M; Nelson A; Berry A
    Curr Opin Chem Biol; 2014 Apr; 19(100):25-33. PubMed ID: 24780276
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nucleophile Promiscuity of Natural and Engineered Aldolases.
    Hernández K; Szekrenyi A; Clapés P
    Chembiochem; 2018 Jul; 19(13):1353-1358. PubMed ID: 29645339
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enantiocomplementary Synthesis of γ-Nitroketones Using Designed and Evolved Carboligases.
    Garrabou X; Verez R; Hilvert D
    J Am Chem Soc; 2017 Jan; 139(1):103-106. PubMed ID: 27992715
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Aldol additions of dihydroxyacetone phosphate to N-Cbz-amino aldehydes catalyzed by L-fuculose-1-phosphate aldolase in emulsion systems: inversion of stereoselectivity as a function of the acceptor aldehyde.
    Espelt L; Bujons J; Parella T; Calveras J; Joglar J; Delgado A; Clapés P
    Chemistry; 2005 Feb; 11(5):1392-401. PubMed ID: 15669071
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rational nanoconjugation improves biocatalytic performance of enzymes: aldol addition catalyzed by immobilized rhamnulose-1-phosphate aldolase.
    Ardao I; Comenge J; Benaiges MD; Álvaro G; Puntes VF
    Langmuir; 2012 Apr; 28(15):6461-7. PubMed ID: 22428999
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases.
    Li A; Cai L; Chen Z; Wang M; Wang N; Nakanishi H; Gao XD; Li Z
    Carbohydr Res; 2017 Nov; 452():108-115. PubMed ID: 29096183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.