These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 26449645)

  • 1. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites.
    Seiter M; Schausberger P
    Sci Rep; 2015 Oct; 5():15046. PubMed ID: 26449645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.
    Walzer A; Schausberger P
    Exp Appl Acarol; 2013 May; 60(1):95-115. PubMed ID: 23104106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.
    Walzer A; Schausberger P
    Anim Behav; 2011 Jan; 81(1):177-184. PubMed ID: 21317973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predation risk-mediated maternal effects in the two-spotted spider mite, Tetranychus urticae.
    Freinschlag J; Schausberger P
    Exp Appl Acarol; 2016 May; 69(1):35-47. PubMed ID: 26923463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite.
    Walzer A; Schausberger P
    Anim Behav; 2012 Dec; 84(6):1411-1417. PubMed ID: 23264692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization.
    Walzer A; Paulus HF; Schausberger P
    Bull Entomol Res; 2004 Dec; 94(6):577-84. PubMed ID: 15541196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites.
    Walzer A; Schausberger P
    Behaviour; 2013 Feb; 150(2):115-132. PubMed ID: 23750040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraguild predation between Amblyseius swirskii and two native Chinese predatory mite species and their development on intraguild prey.
    Guo Y; Lv J; Jiang X; Wang B; Gao Y; Wang E; Xu X
    Sci Rep; 2016 Mar; 6():22992. PubMed ID: 26972164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraguild interactions among three spider mite predators: predation preference and effects on juvenile development and oviposition.
    Rahmani H; Daneshmandi A; Walzer A
    Exp Appl Acarol; 2015 Dec; 67(4):493-505. PubMed ID: 26462926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation.
    Strodl MA; Schausberger P
    PLoS One; 2012; 7(8):e43590. PubMed ID: 22927997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis.
    Cakmak I; Janssen A; Sabelis MW
    Exp Appl Acarol; 2006; 38(1):33-46. PubMed ID: 16550333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk assessment of non-target effects caused by releasing two exotic phytoseiid mites in Japan: can an indigenous phytoseiid mite become IG prey?
    Sato Y; Mochizuki A
    Exp Appl Acarol; 2011 Aug; 54(4):319-29. PubMed ID: 21465332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prey preference, intraguild predation and population dynamics of an arthropod food web on plants.
    Venzon M; Janssen A; Sabelis MW
    Exp Appl Acarol; 2001; 25(10-11):785-808. PubMed ID: 12455871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From repulsion to attraction: species- and spatial context-dependent threat sensitive response of the spider mite Tetranychus urticae to predatory mite cues.
    Fernández Ferrari MC; Schausberger P
    Naturwissenschaften; 2013 Jun; 100(6):541-9. PubMed ID: 23644512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predation on heterospecific larvae by adult females of Kampimodromus aberrans, Amblyseius andersoni, Typhlodromus pyri and Phytoseius finitimus (Acari: Phytoseiidae).
    Ahmad S; Pozzebon A; Duso C
    Exp Appl Acarol; 2015 Sep; 67(1):1-20. PubMed ID: 26154593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food stress causes sex-specific maternal effects in mites.
    Walzer A; Schausberger P
    J Exp Biol; 2015 Aug; 218(Pt 16):2603-9. PubMed ID: 26089530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transgenerational loss and recovery of early learning ability in foraging predatory mites.
    Reichert MB; Christiansen IC; Seiter M; Schausberger P
    Exp Appl Acarol; 2017 Mar; 71(3):243-258. PubMed ID: 28409405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prenatal chemosensory learning by the predatory mite Neoseiulus californicus.
    Peralta Quesada PC; Schausberger P
    PLoS One; 2012; 7(12):e53229. PubMed ID: 23300897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Density of an intraguild predator mediates feeding group size, intraguild egg predation, and intra- and interspecific competition.
    Burley LA; Moyer AT; Petranka JW
    Oecologia; 2006 Jul; 148(4):641-9. PubMed ID: 16514532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory growth following transient intraguild predation risk in predatory mites.
    Walzer A; Lepp N; Schausberger P
    Oikos; 2015 May; 124(5):603-609. PubMed ID: 26005221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.