BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

378 related articles for article (PubMed ID: 26449752)

  • 1. Deletion of Methionine Sulfoxide Reductase A Does Not Affect Atherothrombosis but Promotes Neointimal Hyperplasia and Extracellular Signal-Regulated Kinase 1/2 Signaling.
    Klutho PJ; Pennington SM; Scott JA; Wilson KM; Gu SX; Doddapattar P; Xie L; Venema AN; Zhu LJ; Chauhan AK; Lentz SR; Grumbach IM
    Arterioscler Thromb Vasc Biol; 2015 Dec; 35(12):2594-604. PubMed ID: 26449752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation.
    Sahara M; Ikutomi M; Morita T; Minami Y; Nakajima T; Hirata Y; Nagai R; Sata M
    Cardiovasc Res; 2014 Feb; 101(2):236-46. PubMed ID: 24193738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blockade of the Ras-extracellular signal-regulated kinase 1/2 pathway is involved in smooth muscle 22 alpha-mediated suppression of vascular smooth muscle cell proliferation and neointima hyperplasia.
    Dong LH; Wen JK; Liu G; McNutt MA; Miao SB; Gao R; Zheng B; Zhang H; Han M
    Arterioscler Thromb Vasc Biol; 2010 Apr; 30(4):683-91. PubMed ID: 20139360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PEA-15 (Phosphoprotein Enriched in Astrocytes 15) Is a Protective Mediator in the Vasculature and Is Regulated During Neointimal Hyperplasia.
    Greig FH; Kennedy S; Gibson G; Ramos JW; Nixon GF
    J Am Heart Assoc; 2017 Sep; 6(9):. PubMed ID: 28893763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixed-lineage kinase 3 deficiency promotes neointima formation through increased activation of the RhoA pathway in vascular smooth muscle cells.
    Gadang V; Konaniah E; Hui DY; Jaeschke A
    Arterioscler Thromb Vasc Biol; 2014 Jul; 34(7):1429-36. PubMed ID: 24790140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MFAP4 Promotes Vascular Smooth Muscle Migration, Proliferation and Accelerates Neointima Formation.
    Schlosser A; Pilecki B; Hemstra LE; Kejling K; Kristmannsdottir GB; Wulf-Johansson H; Moeller JB; Füchtbauer EM; Nielsen O; Kirketerp-Møller K; Dubey LK; Hansen PB; Stubbe J; Wrede C; Hegermann J; Ochs M; Rathkolb B; Schrewe A; Bekeredjian R; Wolf E; Gailus-Durner V; Fuchs H; Hrabě de Angelis M; Lindholt JS; Holmskov U; Sorensen GL
    Arterioscler Thromb Vasc Biol; 2016 Jan; 36(1):122-33. PubMed ID: 26564819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulator of G-Protein Signaling 5 Prevents Smooth Muscle Cell Proliferation and Attenuates Neointima Formation.
    Daniel JM; Prock A; Dutzmann J; Sonnenschein K; Thum T; Bauersachs J; Sedding DG
    Arterioscler Thromb Vasc Biol; 2016 Feb; 36(2):317-27. PubMed ID: 26663397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathepsin S Activity Controls Injury-Related Vascular Repair in Mice via the TLR2-Mediated p38MAPK and PI3K-Akt/p-HDAC6 Signaling Pathway.
    Wu H; Cheng XW; Hu L; Takeshita K; Hu C; Du Q; Li X; Zhu E; Huang Z; Yisireyili M; Zhao G; Piao L; Inoue A; Jiang H; Lei Y; Zhang X; Liu S; Dai Q; Kuzuya M; Shi GP; Murohara T
    Arterioscler Thromb Vasc Biol; 2016 Aug; 36(8):1549-57. PubMed ID: 27365406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apoptosis signal-regulating kinase 1 deficiency attenuates vascular injury-induced neointimal hyperplasia by suppressing apoptosis in smooth muscle cells.
    Tasaki T; Yamada S; Guo X; Tanimoto A; Wang KY; Nabeshima A; Kitada S; Noguchi H; Kimura S; Shimajiri S; Kohno K; Ichijo H; Sasaguri Y
    Am J Pathol; 2013 Feb; 182(2):597-609. PubMed ID: 23178077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of interleukin-1 receptor-associated kinase-1 in vascular smooth muscle cell proliferation and neointimal formation after rat carotid injury.
    Jain M; Singh A; Singh V; Barthwal MK
    Arterioscler Thromb Vasc Biol; 2015 Jun; 35(6):1445-55. PubMed ID: 25908764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleoside diphosphate kinase B-activated intermediate conductance potassium channels are critical for neointima formation in mouse carotid arteries.
    Zhou XB; Feng YX; Sun Q; Lukowski R; Qiu Y; Spiger K; Li Z; Ruth P; Korth M; Skolnik EY; Borggrefe M; Dobrev D; Wieland T
    Arterioscler Thromb Vasc Biol; 2015 Aug; 35(8):1852-61. PubMed ID: 26088577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortistatin inhibits migration and proliferation of human vascular smooth muscle cells and decreases neointimal formation on carotid artery ligation.
    Duran-Prado M; Morell M; Delgado-Maroto V; Castaño JP; Aneiros-Fernandez J; de Lecea L; Culler MD; Hernandez-Cortes P; O'Valle F; Delgado M
    Circ Res; 2013 May; 112(11):1444-55. PubMed ID: 23595952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide prevents aortic neointimal hyperplasia by controlling macrophage polarization.
    Lavin B; Gómez M; Pello OM; Castejon B; Piedras MJ; Saura M; Zaragoza C
    Arterioscler Thromb Vasc Biol; 2014 Aug; 34(8):1739-46. PubMed ID: 24925976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Janus Kinase 3, a Novel Regulator for Smooth Muscle Proliferation and Vascular Remodeling.
    Wang YC; Cui XB; Chuang YH; Chen SY
    Arterioscler Thromb Vasc Biol; 2017 Jul; 37(7):1352-1360. PubMed ID: 28473442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting AGGF1 (angiogenic factor with G patch and FHA domains 1) for Blocking Neointimal Formation After Vascular Injury.
    Yao Y; Hu Z; Ye J; Hu C; Song Q; Da X; Yu Y; Li H; Xu C; Chen Q; Wang QK
    J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28649088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kalirin promotes neointimal hyperplasia by activating Rac in smooth muscle cells.
    Wu JH; Fanaroff AC; Sharma KC; Smith LS; Brian L; Eipper BA; Mains RE; Freedman NJ; Zhang L
    Arterioscler Thromb Vasc Biol; 2013 Apr; 33(4):702-8. PubMed ID: 23288169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.
    Karki R; Ho OM; Kim DW
    Biochim Biophys Acta; 2013 Mar; 1830(3):2619-28. PubMed ID: 23274740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pivotal role of serum- and glucocorticoid-inducible kinase 1 in vascular inflammation and atherogenesis.
    Borst O; Schaub M; Walker B; Schmid E; Münzer P; Voelkl J; Alesutan I; Rodríguez JM; Vogel S; Schoenberger T; Metzger K; Rath D; Umbach A; Kuhl D; Müller II; Seizer P; Geisler T; Gawaz M; Lang F
    Arterioscler Thromb Vasc Biol; 2015 Mar; 35(3):547-57. PubMed ID: 25614279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.
    Hubert A; Bochenek ML; Schütz E; Gogiraju R; Münzel T; Schäfer K
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1683-1697. PubMed ID: 28705795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential regulation of vascular smooth muscle and endothelial cell proliferation in vitro and in vivo by cAMP/PKA-activated p85alphaPI3K.
    Torella D; Gasparri C; Ellison GM; Curcio A; Leone A; Vicinanza C; Galuppo V; Mendicino I; Sacco W; Aquila I; Surace FC; Luposella M; Stillo G; Agosti V; Cosentino C; Avvedimento EV; Indolfi C
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2015-25. PubMed ID: 19783773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.