BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 26449912)

  • 1. Neural crest-mediated bone resorption is a determinant of species-specific jaw length.
    Ealba EL; Jheon AH; Hall J; Curantz C; Butcher KD; Schneider RA
    Dev Biol; 2015 Dec; 408(1):151-63. PubMed ID: 26449912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-specific sensitivity to TGFβ signaling and changes to the Mmp13 promoter underlie avian jaw development and evolution.
    Smith SS; Chu D; Qu T; Aggleton JA; Schneider RA
    Elife; 2022 Jun; 11():. PubMed ID: 35666955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of Jaw Length During Development, Disease, and Evolution.
    Schneider RA
    Curr Top Dev Biol; 2015; 115():271-98. PubMed ID: 26589929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FGF and TGFβ signaling link form and function during jaw development and evolution.
    Woronowicz KC; Gline SE; Herfat ST; Fields AJ; Schneider RA
    Dev Biol; 2018 Dec; 444 Suppl 1(Suppl 1):S219-S236. PubMed ID: 29753626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesenchymal and mechanical mechanisms of secondary cartilage induction.
    Solem RC; Eames BF; Tokita M; Schneider RA
    Dev Biol; 2011 Aug; 356(1):28-39. PubMed ID: 21600197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-β Signaling in Cranial Neural Crest Affects Late-Stage Mandibular Bone Resorption and Length.
    Houchen CJ; Ghanem S; Kaartinen V; Bumann EE
    bioRxiv; 2024 May; ():. PubMed ID: 38826301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple developmental mechanisms regulate species-specific jaw size.
    Fish JL; Sklar RS; Woronowicz KC; Schneider RA
    Development; 2014 Feb; 141(3):674-84. PubMed ID: 24449843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cellular and molecular origins of beak morphology.
    Schneider RA; Helms JA
    Science; 2003 Jan; 299(5606):565-8. PubMed ID: 12543976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural crest and the origin of species-specific pattern.
    Schneider RA
    Genesis; 2018 Jun; 56(6-7):e23219. PubMed ID: 30134069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental origins of species-specific muscle pattern.
    Tokita M; Schneider RA
    Dev Biol; 2009 Jul; 331(2):311-25. PubMed ID: 19450573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of a developmental mechanism: Species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis.
    Hall J; Jheon AH; Ealba EL; Eames BF; Butcher KD; Mak SS; Ladher R; Alliston T; Schneider RA
    Dev Biol; 2014 Jan; 385(2):380-95. PubMed ID: 24262986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchyme-dependent BMP signaling directs the timing of mandibular osteogenesis.
    Merrill AE; Eames BF; Weston SJ; Heath T; Schneider RA
    Development; 2008 Apr; 135(7):1223-34. PubMed ID: 18287200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quail-duck chimeras reveal spatiotemporal plasticity in molecular and histogenic programs of cranial feather development.
    Eames BF; Schneider RA
    Development; 2005 Apr; 132(7):1499-509. PubMed ID: 15728671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transgenic overexpression of tartrate-resistant acid phosphatase is associated with induction of osteoblast gene expression and increased cortical bone mineral content and density.
    Gradin P; Hollberg K; Cassady AI; Lång P; Andersson G
    Cells Tissues Organs; 2012; 196(1):68-81. PubMed ID: 22248481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation and functions of osteoclasts and odontoclasts in mineralized tissue resorption.
    Sasaki T
    Microsc Res Tech; 2003 Aug; 61(6):483-95. PubMed ID: 12879416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption.
    Kim MS; Day CJ; Selinger CI; Magno CL; Stephens SR; Morrison NA
    J Biol Chem; 2006 Jan; 281(2):1274-85. PubMed ID: 16280328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the role of connexin 43-mediated intercellular communication in the process of intracortical bone resorption via osteocytic osteolysis.
    Lloyd SA; Loiselle AE; Zhang Y; Donahue HJ
    BMC Musculoskelet Disord; 2014 Apr; 15():122. PubMed ID: 24716486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoprotegerin influences the bone resorption activity of osteoclasts.
    Fu YX; Gu JH; Zhang YR; Tong XS; Zhao HY; Yuan Y; Liu XZ; Bian JC; Liu ZP
    Int J Mol Med; 2013 Jun; 31(6):1411-7. PubMed ID: 23563320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genesis of cartilage size and shape during development and evolution.
    Eames BF; Schneider RA
    Development; 2008 Dec; 135(23):3947-58. PubMed ID: 18987028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyphosphate-mediated inhibition of tartrate-resistant acid phosphatase and suppression of bone resorption of osteoclasts.
    Harada K; Itoh H; Kawazoe Y; Miyazaki S; Doi K; Kubo T; Akagawa Y; Shiba T
    PLoS One; 2013; 8(11):e78612. PubMed ID: 24223830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.