BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26450109)

  • 21. Spinal navigation for posterior instrumentation of C1-2 instability using a mobile intraoperative CT scanner.
    Czabanka M; Haemmerli J; Hecht N; Foehre B; Arden K; Liebig T; Woitzik J; Vajkoczy P
    J Neurosurg Spine; 2017 Sep; 27(3):268-275. PubMed ID: 28598291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Data-fusion display system with volume rendering of intraoperatively scanned CT images.
    Hayashibe M; Suzuki N; Hattori A; Otake Y; Suzuki S; Nakata N
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):559-66. PubMed ID: 16686004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy.
    Zhang X; Wang J; Wang T; Ji X; Shen Y; Sun Z; Zhang X
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1285-1294. PubMed ID: 31016562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study.
    Suenaga H; Tran HH; Liao H; Masamune K; Dohi T; Hoshi K; Takato T
    BMC Med Imaging; 2015 Nov; 15():51. PubMed ID: 26525142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Registration of CT to 3D ultrasound using near-field fiducial localization: A feasibility study.
    Kingma R; Rohling RN; Nguan C
    Comput Aided Surg; 2011; 16(2):54-70. PubMed ID: 21322745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CT-MR image data fusion for computer-assisted navigated surgery of orbital tumors.
    Nemec SF; Peloschek P; Schmook MT; Krestan CR; Hauff W; Matula C; Czerny C
    Eur J Radiol; 2010 Feb; 73(2):224-9. PubMed ID: 19097718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery.
    van de Kraats EB; Carelsen B; Fokkens WJ; Boon SN; Noordhoek N; Niessen WJ; van Walsum T
    Phys Med Biol; 2005 Dec; 50(24):5769-81. PubMed ID: 16333154
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of 3D C-arm-based registration to conventional pair-point registration regarding navigation accuracy in ENT surgery.
    Grauvogel TD; Becker C; Hassepass F; Arndt S; Laszig R; Maier W
    Otolaryngol Head Neck Surg; 2015 Feb; 152(2):266-71. PubMed ID: 25505256
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro accuracy of a novel registration and targeting technique for image-guided template production.
    Widmann G; Widmann R; Widmann E; Jaschke W; Bale RJ
    Clin Oral Implants Res; 2005 Aug; 16(4):502-8. PubMed ID: 16117777
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D image-guided robotic needle positioning system for small animal interventions.
    Bax JS; Waring CS; Sherebrin S; Stapleton S; Hudson TJ; Jaffray DA; Lacefield JC; Fenster A
    Med Phys; 2013 Jan; 40(1):011909. PubMed ID: 23298100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental validation of predicted application accuracies for computer-assisted (CAS) intraoperative navigation with paired-point registration.
    Perwög M; Bardosi Z; Freysinger W
    Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):425-441. PubMed ID: 28801767
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of the accuracy of invasive and noninvasive registration methods for image-guided oral implant surgery.
    Widmann G; Stoffner R; Schullian P; Widmann R; Keiler M; Zangerl A; Puelacher W; Bale RJ
    Int J Oral Maxillofac Implants; 2010; 25(3):491-8. PubMed ID: 20556247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic correction of registration errors in surgical navigation systems.
    Wittmann W; Wenger T; Zaminer B; Lueth TC
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2922-30. PubMed ID: 21803677
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Initial investigation of an automatic registration algorithm for surgical navigation.
    Bootsma GJ; Siewerdsen JH; Daly MJ; Jaffray DA
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3638-42. PubMed ID: 19163499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electromagnetically tracked personalized templates for surgical navigation.
    Dickinson AWL; Zec ML; Pichora DR; Rasquinha BJ; Ellis RE
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):1049-1058. PubMed ID: 28332159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of preoperative registration and automatic tracking technique for image-guided maxillofacial surgery.
    Zhang W; Wang X; Zhang J; Shen G
    Comput Assist Surg (Abingdon); 2016 Dec; 21(1):137-142. PubMed ID: 27973961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application accuracy of computed tomography-based, image-guided navigation of temporal bone.
    Pillai P; Sammet S; Ammirati M
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):326-32; discussion 332-3. PubMed ID: 18981839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional endovascular navigation with electromagnetic tracking: ex vivo and in vivo accuracy.
    Manstad-Hulaas F; Tangen GA; Gruionu LG; Aadahl P; Hernes TA
    J Endovasc Ther; 2011 Apr; 18(2):230-40. PubMed ID: 21521064
    [TBL] [Abstract][Full Text] [Related]  

  • 40. X-ray and optical stereo-based 3D sensor fusion system for image-guided neurosurgery.
    Kim DN; Chae YS; Kim MY
    Int J Comput Assist Radiol Surg; 2016 Apr; 11(4):529-41. PubMed ID: 26410838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.