These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 26450301)
1. Ring-polymer instanton theory of electron transfer in the nonadiabatic limit. Richardson JO J Chem Phys; 2015 Oct; 143(13):134116. PubMed ID: 26450301 [TBL] [Abstract][Full Text] [Related]
2. Semiclassical Green's functions and an instanton formulation of electron-transfer rates in the nonadiabatic limit. Richardson JO; Bauer R; Thoss M J Chem Phys; 2015 Oct; 143(13):134115. PubMed ID: 26450300 [TBL] [Abstract][Full Text] [Related]
3. Nonadiabatic quantum transition-state theory in the golden-rule limit. II. Overcoming the pitfalls of the saddle-point and semiclassical approximations. Fang W; Thapa MJ; Richardson JO J Chem Phys; 2019 Dec; 151(21):214101. PubMed ID: 31822067 [TBL] [Abstract][Full Text] [Related]
5. Nonadiabatic instanton rate theory beyond the golden-rule limit. Trenins G; Richardson JO J Chem Phys; 2022 May; 156(17):174115. PubMed ID: 35525664 [TBL] [Abstract][Full Text] [Related]
6. Microcanonical and thermal instanton rate theory for chemical reactions at all temperatures. Richardson JO Faraday Discuss; 2016 Dec; 195():49-67. PubMed ID: 27731475 [TBL] [Abstract][Full Text] [Related]
7. On the derivation of semiclassical expressions for quantum reaction rate constants in multidimensional systems. Kryvohuz M J Chem Phys; 2013 Jun; 138(24):244114. PubMed ID: 23822234 [TBL] [Abstract][Full Text] [Related]
8. Direct simulation of electron transfer using ring polymer molecular dynamics: comparison with semiclassical instanton theory and exact quantum methods. Menzeleev AR; Ananth N; Miller TF J Chem Phys; 2011 Aug; 135(7):074106. PubMed ID: 21861555 [TBL] [Abstract][Full Text] [Related]
9. Semiclassical analysis of the quantum instanton approximation. Vaillant CL; Thapa MJ; Vaníček J; Richardson JO J Chem Phys; 2019 Oct; 151(14):144111. PubMed ID: 31615229 [TBL] [Abstract][Full Text] [Related]
10. A general non-adiabatic quantum instanton approximation. Lawrence JE; Manolopoulos DE J Chem Phys; 2020 May; 152(20):204117. PubMed ID: 32486674 [TBL] [Abstract][Full Text] [Related]
11. Nonadiabatic quantum transition-state theory in the golden-rule limit. I. Theory and application to model systems. Thapa MJ; Fang W; Richardson JO J Chem Phys; 2019 Mar; 150(10):104107. PubMed ID: 30876356 [TBL] [Abstract][Full Text] [Related]
12. On the equivalence of two commonly used forms of semiclassical instanton theory. Althorpe SC J Chem Phys; 2011 Mar; 134(11):114104. PubMed ID: 21428604 [TBL] [Abstract][Full Text] [Related]
13. On the connection of semiclassical instanton theory with Marcus theory for electron transfer in solution. Shushkov P J Chem Phys; 2013 Jun; 138(22):224102. PubMed ID: 23781778 [TBL] [Abstract][Full Text] [Related]
14. On the calculation of quantum mechanical electron transfer rates. Lawrence JE; Fletcher T; Lindoy LP; Manolopoulos DE J Chem Phys; 2019 Sep; 151(11):114119. PubMed ID: 31542014 [TBL] [Abstract][Full Text] [Related]
15. Instanton theory for Fermi's golden rule and beyond. Ansari IM; Heller ER; Trenins G; Richardson JO Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200378. PubMed ID: 35341312 [TBL] [Abstract][Full Text] [Related]
17. Efficient algorithms for semiclassical instanton calculations based on discretized path integrals. Kawatsu T; Miura S J Chem Phys; 2014 Jul; 141(2):024101. PubMed ID: 25027993 [TBL] [Abstract][Full Text] [Related]
18. Instanton formulation of Fermi's golden rule in the Marcus inverted regime. Heller ER; Richardson JO J Chem Phys; 2020 Jan; 152(3):034106. PubMed ID: 31968950 [TBL] [Abstract][Full Text] [Related]
19. Effects of tunnelling and asymmetry for system-bath models of electron transfer. Mattiat J; Richardson JO J Chem Phys; 2018 Mar; 148(10):102311. PubMed ID: 29544261 [TBL] [Abstract][Full Text] [Related]
20. Semiclassical instanton approach to calculation of reaction rate constants in multidimensional chemical systems. Kryvohuz M J Chem Phys; 2011 Mar; 134(11):114103. PubMed ID: 21428603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]