These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26450307)

  • 1. Synthesis of nanoparticles in helium droplets-A characterization comparing mass-spectra and electron microscopy data.
    Thaler P; Volk A; Knez D; Lackner F; Haberfehlner G; Steurer J; Schnedlitz M; Ernst WE
    J Chem Phys; 2015 Oct; 143(13):134201. PubMed ID: 26450307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helium droplets: a new route to nanoparticles.
    Boatwright A; Feng C; Spence D; Latimer E; Binns C; Ellis AM; Yang S
    Faraday Discuss; 2013; 162():113-24. PubMed ID: 24015579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticles.
    Schnedlitz M; Fernandez-Perea R; Knez D; Lasserus M; Schiffmann A; Hofer F; Hauser AW; de Lara-Castells MP; Ernst WE
    J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(32):20037-20043. PubMed ID: 33014236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.
    Shankar SS; Rai A; Ahmad A; Sastry M
    J Colloid Interface Sci; 2004 Jul; 275(2):496-502. PubMed ID: 15178278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vortex-induced aggregation in superfluid helium droplets.
    Spence D; Latimer E; Feng C; Boatwright A; Ellis AM; Yang S
    Phys Chem Chem Phys; 2014 Apr; 16(15):6903-6. PubMed ID: 24615588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ASAXS study on the formation of core-shell Ag/Au nanoparticles in glass.
    Haug J; Kruth H; Dubiel M; Hofmeister H; Haas S; Tatchev D; Hoell A
    Nanotechnology; 2009 Dec; 20(50):505705. PubMed ID: 19923657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile synthesis of near-monodisperse Ag@Ni core-shell nanoparticles and their application for catalytic generation of hydrogen.
    Guo H; Chen Y; Chen X; Wen R; Yue GH; Peng DL
    Nanotechnology; 2011 May; 22(19):195604. PubMed ID: 21430312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An intense source for cold cluster ions of a specific composition.
    Tiefenthaler L; Ameixa J; Martini P; Albertini S; Ballauf L; Zankl M; Goulart M; Laimer F; von Haeften K; Zappa F; Scheier P
    Rev Sci Instrum; 2020 Mar; 91(3):033315. PubMed ID: 32260000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior.
    Ascencio JA; Liu HB; Pal U; Medina A; Wang ZL
    Microsc Res Tech; 2006 Jul; 69(7):522-30. PubMed ID: 16732542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growing metal nanoparticles in superfluid helium.
    Yang S; Ellis AM; Spence D; Feng C; Boatwright A; Latimer E; Binns C
    Nanoscale; 2013 Dec; 5(23):11545-53. PubMed ID: 24107922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally induced alloying processes in a bimetallic system at the nanoscale: AgAu sub-5 nm core-shell particles studied at atomic resolution.
    Lasserus M; Schnedlitz M; Knez D; Messner R; Schiffmann A; Lackner F; Hauser AW; Hofer F; Ernst WE
    Nanoscale; 2018 Jan; 10(4):2017-2024. PubMed ID: 29319708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shell-Isolated Au Nanoparticles Functionalized with Rhodamine B Fluorophores in Helium Nanodroplets.
    Messner R; Ernst WE; Lackner F
    J Phys Chem Lett; 2021 Jan; 12(1):145-150. PubMed ID: 33315408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly.
    Sun X; Li Y
    Langmuir; 2005 Jun; 21(13):6019-24. PubMed ID: 15952855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of hollow Ag-Au bimetallic nanoparticles in polyelectrolyte multilayers.
    Zhang X; Zhang G; Zhang B; Su Z
    Langmuir; 2013 Jun; 29(22):6722-7. PubMed ID: 23642124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsolvation of phthalocyanines in superfluid helium droplets.
    Lehnig R; Slenczka A
    Chemphyschem; 2004 Jul; 5(7):1014-9. PubMed ID: 15298388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile and controllable strategy to synthesize Au-Ag alloy nanoparticles within polyelectrolyte multilayer nanoreactors upon thermal reduction.
    Shang L; Jin L; Guo S; Zhai J; Dong S
    Langmuir; 2010 May; 26(9):6713-9. PubMed ID: 20017511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inelastic electron interaction with chloroform clusters embedded in helium droplets.
    Denifl S; Zappa F; Mähr I; Mauracher A; Probst M; Märk TD; Scheier P
    J Am Chem Soc; 2008 Apr; 130(15):5065-71. PubMed ID: 18335985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the passivation of iron particles at the nanoscale.
    Lasserus M; Knez D; Schnedlitz M; Hauser AW; Hofer F; Ernst WE
    Nanoscale Adv; 2019 Jun; 1(6):2276-2283. PubMed ID: 36131962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.